切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 136 -142. doi: 10.3877/cma.j.issn.1674-0807.2023.03.002

论著

全身免疫炎症指数对乳腺癌新辅助化疗疗效的预测价值及临床预测模型的构建
张旺, 曹家兴, 刘九洋, 吴高松()   
  1. 430071 武汉大学中南医院甲状腺乳腺外科
  • 收稿日期:2022-12-26 出版日期:2023-06-01
  • 通信作者: 吴高松

Predictive value of systemic immune-inflammation index for neoadjuvant chemotherapy response in breast cancer and establishment of clinical prediction model

Wang Zhang, Jiaxing Cao, Jiuyang Liu, Gaosong Wu()   

  1. Department of Thyroid and Breast Surgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
  • Received:2022-12-26 Published:2023-06-01
  • Corresponding author: Gaosong Wu
引用本文:

张旺, 曹家兴, 刘九洋, 吴高松. 全身免疫炎症指数对乳腺癌新辅助化疗疗效的预测价值及临床预测模型的构建[J/OL]. 中华乳腺病杂志(电子版), 2023, 17(03): 136-142.

Wang Zhang, Jiaxing Cao, Jiuyang Liu, Gaosong Wu. Predictive value of systemic immune-inflammation index for neoadjuvant chemotherapy response in breast cancer and establishment of clinical prediction model[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(03): 136-142.

目的

探讨治疗前全身免疫炎症指数(SII)对乳腺癌新辅助化疗(NAC)后病理完全缓解(pCR)的预测价值,并结合相关临床病理特征构建临床预测模型。

方法

回顾性收集2019年1月至2022年4月武汉大学中南医院甲状腺乳腺外科收治的157例接受NAC的乳腺癌患者临床资料。利用受试者操作特征(ROC)曲线评价SII对乳腺癌NAC后pCR的预测价值,同时根据约登指数的最大值确定其最佳临界值。进一步采用单因素、多因素Logistic回归分析乳腺癌患者临床病理特征与NAC后pCR的关系,同时构建临床预测模型。制作ROC曲线评价该模型,并采用Bootstrap法进行内部验证。

结果

ROC曲线显示治疗前SII最佳临界值为418.92,预测乳腺癌NAC后pCR的曲线下面积(AUC)为0.737(95%CI:0.657~0.818)。多因素Logistic回归分析结果显示组织学分级(OR=0.095, 95%CI:0.024~0.292, P=0.001)、肿瘤大小(OR=0.091, 95%CI:0.019~0.333, P=0.001)、ER(OR=0.104, 95%CI:0.026~0.348,P=0.001),HER-2(OR=2.962, 95%CI:1.206~7.511, P=0.019)及SII(OR=0.149,95%CI:0.059~0.350,P<0.001)是乳腺癌NAC后pCR的独立预测因素。根据多因素Logistic回归结果,构建临床预测模型,其ROC曲线的AUC为0.868(95%CI: 0.813~0.920)。校准图显示,预测曲线与理想曲线贴合良好,预测值与实际值之间符合度的平均绝对误差为0.035。

结论

治疗前SII可作为乳腺癌患者NAC后pCR的独立预测指标,同时结合组织学分级、肿瘤大小、ER和HER-2等临床病理特征建立的临床模型能更好地预测腺癌NAC疗效。

Objective

To explore the prediction value of pre-treatment systemic immune-inflammation index (SII) for pathological complete response(pCR) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC), and to establish a clinical prediction model based on SII and other relevant clinicopathological characteristics.

Methods

We retrospectively collected the clinical data of 157 breast cancer patients undergoing NAC in the Department of Thyroid and Breast Surgery, Zhongnan Hospital, Wuhan University from January 2019 to April 2022. The predictive value of SII for pCR after NAC was evaluated by receiver operating characteristic (ROC) curve, and the cut-off value was determined according to the maximum Youden index. Univariate and multivariate logistic regression analyses were used to analyze the relationship between clinicopathological characteristics and pCR after NAC in breast cancer patients. Meanwhile, a clinical prediction model was established. The ROC curve was made to evaluate the model and the Bootstrap method was used for internal verification.

Results

ROC curve analysis showed that the optimal cut-off value of pre-treatment SII was 418.92, the area under the curve (AUC) for predicting the pCR of breast cancer after NAC was 0.737(95%CI: 0.657-0.818). Multivariate logistic regression analysis showed that histological grade (OR=0.095, 95%CI: 0.024-0.292, P=0.001), tumor size(OR=0.091, 95%CI: 0.019-0.333, P=0.001), ER (OR=0.104, 95%CI: 0.026-0.348, P=0.001), HER-2 (OR=2.962, 95%CI: 1.206-7.511, P=0.019) and SII(OR=0.149, 95%CI: 0.059-0.350, P<0.001) were independent predictive factors of pCR after NAC in breast cancer patients. According to the results of multivariate logistic regression, a clinical prediction model was constructed, and the AUC of the ROC curve was 0.868 (95%CI: 0.813-0.920). The calibration plot shows that the prediction curve was close to the ideal curve, and the mean absolute error of the agreement between the predicted value and the actual value was 0.035.

Conclusions

Pre-treatment SII can be used as an independent factor predicting the pCR of breast cancer after NAC. Meanwhile, the clinical prediction model based on the clinicopathological characteristics (histological grade, tumor size, ER, and HER-2 and SII) can effectively predict the NAC response in breast cancer patients.

图1 157例乳腺癌患者的NLR、PLR及SII的ROC曲线注:NLR为中性粒细胞计数/淋巴细胞计数,PLR为血小板计数/淋巴细胞计数,SII为全身免疫炎症指数;ROC为受试者操作特征曲线
表1 不同临床病理特征的乳腺癌患者新辅助化疗后pCR的单因素Logistic回归分析[例(%)]
临床病理特征 pCR(n=59) 非pCR(n=98) OR P
年龄        
<48岁 27(45.8) 47(48.0) 1  
≥48岁 32(54.2) 51(52.0) 1.092 0.789
绝经状态        
35(59.3) 60(61.2) 1  
24(40.7) 38(38.8) 1.082 0.813
组织学分级        
1~2级 39(66.1) 47(48.0) 1  
3级 20(33.9) 51(52.0) 0.472 0.028
肿瘤数目        
单发 54(91.5) 72(73.5) 1  
多发 5(8.5) 26(26.5) 0.256 0.009
肿瘤大小        
≤5 cm 53(89.8) 70(71.4) 1  
>5 cm 6(10.2) 28(28.6) 0.283 0.009
腋窝淋巴结        
阴性 22(37.3) 46(46.9) 1  
阳性 37(62.7) 52(53.1) 1.488 0.238
ER        
阴性 36(61.0) 31(31.6) 1  
阳性 23(39.0) 67(68.4) 0.296 <0.001
AR        
阴性 22(37.3) 20(20.4) 1  
阳性 37(62.7) 78(79.6) 0.431 0.022
PR        
阴性 40(67.8) 41(41.8) 1  
阳性 19(32.2) 57(58.2) 0.341 0.002
HER-2        
阴性 26(44.1) 69(70.4) 1  
阳性 33(55.9) 29(29.6) 3.019 0.001
Ki-67        
<20% 21(35.6) 23(23.5) 1  
≥20% 38(64.4) 75(76.5) 0.555 0.103
分子分型        
luminal A型 3(5.1) 4(4.1) 1  
luminal B型 23(39.0) 64(65.3) 0.479 0.358
HER-2过表达型 16(27.1) 12(12.2) 1.777 0.500
三阴性 17(28.8) 18(18.4) 1.259 0.782
化疗方案        
EC-T 40(67.8) 70(71.4) 1  
TCb 14(23.7) 16(16.3) 1.531 0.306
AC-T 5(8.5) 12(12.2) 0.729 0.578
化疗周期数        
4 3(5.1) 8(8.2) 1  
6 17(28.8) 30(30.6) 1.511 0.58
8 39(66.1) 60(61.2) 1.733 0.44
NLR        
47(79.7) 49(50.0) 1  
12(20.3) 49(50.0) 0.255 <0.001
PLR        
32(54.2) 24(24.5) 1  
27(45.8) 74(75.5) 0.273 <0.001
SII        
39(66.1) 26(26.5) 1  
20(33.9) 72(73.5) 0.185 <0.001
表2 157例乳腺癌患者新辅助化疗后pCR的多因素Logistic回归分析
图2 157例乳腺癌患者新辅助化疗后pCR的临床预测模型列线图注:SII为全身免疫炎症指数;HER-2为人表皮生长因子受体2;ER为雌激素受体;pCR为病理完全缓解
图3 157例乳腺癌患者新辅助化疗后pCR的临床预测模型的受试者操作特征曲线注:曲线下面积为0.868
图4 157例乳腺癌患者新辅助化疗后pCR的临床预测模型的校准曲线
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
Rusthoven CG, Rabinovitch RA, Jones BL, et al. The impact of postmastectomy and regional nodal radiation after neoadjuvant chemotherapy for clinically lymph node-positive breast cancer: a National Cancer Database (NCDB) analysis[J]. Ann Oncol, 2016, 27(5): 818-827.
[3]
Azamjah N, Soltan-Zadeh Y, Zayeri F. Global trend of breast cancer mortality rate: a 25-year study[J]. Asian Pac J Cancer Prev, 2019, 20(7): 2015-2020.
[4]
Doval DC, Dutta K, Batra U, et al. Neoadjuvant chemotherapy in breast cancer: review of literature[J]. J Indian Med Assoc, 2013, 111(9): 629-631.
[5]
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172.
[6]
Colomer R, Saura C, Sánchez-Rovira P, et al. Neoadjuvant management of early breast cancer: a clinical and investigational position statement[J]. Oncologist, 2019, 24(5): 603-611.
[7]
Kim HY, Kim TH, Yoon HK, et al. The role of neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in predicting neoadjuvant chemotherapy response in breast cancer[J]. J Breast Cancer, 2019, 22(3): 425-438.
[8]
Graziano V, Grassadonia A, Iezzi L, et al. Combination of peripheral neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio is predictive of pathological complete response after neoadjuvant chemotherapy in breast cancer patients[J]. Breast, 2019, 44: 33-38.
[9]
Chen L, Kong X, Wang Z, et al. Pre-treatment systemic immune-inflammation index is a useful prognostic indicator in patients with breast cancer undergoing neoadjuvant chemotherapy[J]. J Cell Mol Med, 2020, 24(5): 2993-3021.
[10]
Ogston KN, Miller ID, Payne S, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival[J]. Breast (Edinburgh, Scotland), 2003, 12(5): 320-327.
[11]
Allison KH, Hammond MEH, Dowsett M, et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update[J]. J Clin Oncol, 2020, 38(12): 1346-1366.
[12]
《乳腺癌HER2检测指南》编写组. 乳腺癌HER2检测指南(2019版)[J]. 中华病理学杂志2019, 48(3): 169-175.
[13]
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志2021, 31(10): 954-1040.
[14]
Danforth DN. The role of chronic inflammation in the development of breast cancer[J]. Cancers (Basel), 2021, 13(15): 3918.
[15]
Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment[J]. Nat Rev Immunol, 2007, 7(1): 41-51.
[16]
Liu S, Lachapelle J, Leung S, et al. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer[J]. Breast Cancer Res, 2012, 14(2): R48.
[17]
Rangan R, Kanetkar SR, Bhosale SJ, et al. Evaluation and comparison of intratumoural and intrastromal infiltrating lymphocytes with clinicopathological features in breast carcinoma patients who have received neoadjuvant chemotherapy-A cross-sectional study[J]. Ann Med Surg (Lond), 2022, 80: 104 308.
[18]
Savas P, Salgado R, Denkert C, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic[J]. Nat Rev Clin Oncol, 2016, 13(4): 228-241.
[19]
Guo Y, Cui W, Pei Y, et al. Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-β signaling pathway[J]. Gynecol Oncol, 2019, 153(3): 639-650.
[20]
Liu S, Fang J, Jiao D, et al. Elevated platelet count predicts poor prognosis in breast cancer patients with supraclavicular lymph node metastasis[J]. Cancer Manag Res, 2020, 12: 6069-6075.
[21]
Jalali A, Miresse D, Fahey MR, et al. Peripheral blood cell ratios as prognostic indicators in a neoadjuvant chemotherapy-treated breast cancer cohort[J]. Curr Oncol, 2022, 29(10): 7512-7523.
[22]
Grassadonia A, Graziano V, Iezzi L, et al. Prognostic relevance of neutrophil to lymphocyte ratio (NLR) in luminal breast cancer: a retrospective analysis in the neoadjuvant setting[J]. Cells, 2021, 10(7): 1685.
[23]
Li X, Tan Q, Li H, et al. Predictive value of pretreatment peripheral neutrophil-to-lymphocyte ratio for response to neoadjuvant chemotherapy and breast cancer prognosis[J]. Cancer Manag Res, 2021, 13: 5889-5898.
[24]
Hu B, Yang XR, Xu Y, et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma[J]. Clin Cancer Res, 2014, 20(23): 6212-6222.
[25]
Chen L, Yan Y, Zhu L, et al. Systemic immune-inflammation index as a useful prognostic in dicator predicts survival in patients with advanced gastric cancer treated with neoadjuvant chemotherapy[J]. Cancer Manag Res, 2017, 9: 849-867.
[26]
Yang J, Guo X, Wang M, et al. Pre-treatment inflammatory indexes as predictors of survival and cetuximab efficacy in metastatic colorectal cancer patients with wild-type RAS[J]. Sci Rep, 2017, 7(1): 17 166.
[27]
Wang P, Yue W, Li W, et al. Systemic immune-inflammation index and ultrasonographic classification of breast imaging-reporting and data system predict outcomes of triple-negative breast cancer[J]. Cancer Manag Res, 2019, 11: 813-819.
[28]
Liu J, Shi Z, Bai Y, et al. Prognostic significance of systemic immune-inflammation index in triple-negative breast cancer[J]. Cancer Manag Res, 2019, 11: 4471-4480.
[29]
Jiang L, Fang J, Ding J. High systemic immune-inflammation index predicts poor survival in patients with human epidermal growth factor receptor-2 positive breast cancer receiving adjuvant trastuzumab[J]. Cancer Manag Res, 2020, 12: 475-484.
[30]
Yu Y, Wu S, Xing H, et al. Development and validation of a novel model for predicting prognosis of non-pCR patients after neoadjuvant therapy for breast cancer[J]. Front Oncol, 2021, 11: 675 533.
[31]
Boér K, Kahán Z, Landherr L, et al. Pathologic complete response rates after neoadjuvant pertuzumab and trastuzumab with chemotherapy in early stage HER2-positive breast cancer - increasing rates of breast conserving surgery: a real-world experience[J]. Pathol Oncol Res, 2021, 27: 1 609 785.
[32]
Guan D, Jie Q, Wu Y, et al. Real-world data on breast pathologic complete response and disease-free survival after neoadjuvant chemotherapy for hormone receptor-positive, human epidermal growth factor receptor-2-negative breast cancer: a multicenter, retrospective study in China[J]. World J Surg Oncol, 2022, 20(1): 326.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[3] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[4] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[5] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[6] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[7] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[8] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[9] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[10] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[13] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[14] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[15] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?