切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 362 -365. doi: 10.3877/cma.j.issn.1674-0807.2023.06.006

综述

肠道微生物在乳腺癌中的研究进展
伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹()   
  1. 524000 湛江,广东医科大学第一临床医学院;521800 佛山,广东省佛山市第一人民医院乳腺科
    521800 佛山,广东省佛山市第一人民医院乳腺科
  • 收稿日期:2022-09-17 出版日期:2023-12-01
  • 通信作者: 周丹
  • 基金资助:
    广东省医学科研基金(2018102592229670); 登峰计划项目(2020B018); 广东省中医药局课题(20231324)

Gut microbiota in breast cancer

Qiuyuan Wu, Peixian Chen, Yuhua Deng   

  • Received:2022-09-17 Published:2023-12-01
引用本文:

伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.

Qiuyuan Wu, Peixian Chen, Yuhua Deng. Gut microbiota in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(06): 362-365.

乳腺癌的发病机制目前尚未完全阐明。研究发现:肠道菌群与乳腺癌之间的联系尤为密切,能够通过影响雌激素水平、炎症免疫反应、肿瘤微环境等,参与乳腺癌的病理进展过程,并影响乳腺癌的治疗。本文总结了近年来肠道菌群在乳腺癌中的研究进展,希望能够为乳腺癌提供一种新的诊疗思路和潜在的治疗策略。

[1]
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA: A Cancer J Clin, 2023, 73(1): 17-48.
[2]
Hills RD, Pontefract BA, Mishcon HR, et al. Gut microbiome: profound implications for diet and disease[J]. Nutrients, 2019, 11(7): 1613.
[3]
Jaye K, Li CG, Bhuyan DJ. The complex interplay of gut microbiota with the five most common cancer types: from carcinogenesis to therapeutics to prognoses[J]. Crit Rev Oncol Hematol, 2021, 165: 103429.
[4]
Scott AJ, Alexander JL, Merrifield CA, et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis[J]. Gut, 2019, 68(9): 1624-1632.
[5]
AAlizadehmohajer N, Shojaeifar S, Nedaeinia R, et al. Association between the microbiota and women’s cancers-cause or consequences?[J]. Biomed Pharmacother, 2020, 127: 110203.
[6]
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65.
[7]
Yaghjyan L, Mai V, Darville LNF, et al. Associations of gut microbiome with endogenous estrogen levels in healthy postmenopausal women[J]. Cancer Causes Control, 2023, 34(10):873-881.
[8]
Wang N, Yang J, Han W, et al. Identifying distinctive tissue and fecal microbial signatures and the tumor-promoting effects of deoxycholic acid on breast cancer[J]. Front Cell Infect Microbiol, 2022, 12: 1029905.
[9]
Byrd DA, Vogtmann E, Wu Z, et al. Associations of fecal microbial profiles with breast cancer and nonmalignant breast disease in the Ghana Breast Health Study[J]. Int J Cancer, 2021, 148(11): 2712-2723.
[10]
Gravena AAF, Romeiro Lopes TC, Demitto MO, et al. The obesity and the risk of breast cancer among pre and postmenopausal women[J]. Asian Pac J Cancer Prev, 2018, 19(9): 2429-2436.
[11]
Zengul AG, Demark-Wahnefried W, Barnes S, et al. Associations between dietary fiber, the fecal microbiota and estrogen metabolism in postmenopausal women with breast cancer[J]. Nutr Cancer, 2021, 73(7): 1108-1117.
[12]
Sampsell K, Hao D, Reimer RA. The gut microbiota: a potential gateway to improved health outcomes in breast cancer treatment and survivorship[J]. Int J Mol Sci, 2020, 21(23): 9239.
[13]
Goedecke JH, Tootla M, Keswell D. Ethnic differences in regional adipose tissue oestrogen receptor gene expression[J]. Endocr Connect, 2019, 8(1): 32-38.
[14]
Sampsell K, Hao D, Reimer R. The gut microbiota: a potential gateway to improved health outcomes in breast cancer treatment and survivorship[J]. Int J Mol Sci, 2020, 21(23): 9239.
[15]
Amoroso C, Perillo F, Strati F, et al. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation[J]. Cells, 2020, 9(5): 1234.
[16]
Wells JM, Brummer RJ, Derrien M, et al. Homeostasis of the gut barrier and potential biomarkers[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312(3): G171-G193.
[17]
Rutkowski MR, Stephen TL, Svoronos N, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation[J]. Cancer Cell, 2015, 27(1): 27-40.
[18]
Mantovani A, Ponzetta A, Inforzato A, et al. Innate immunity, inflammation and tumour progression: double-edged swords[J]. J Intern Med, 2019, 285(5): 524-532.
[19]
Goedert JJ, Hua X, Bilelecka A, et al. Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota[J]. Br J Cancer, 2018, 118(4): 471-479.
[20]
Yang Y, Li L, Xu C, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis[J]. Gut, 2020, 70(8): 1495-1506.
[21]
Wu J, Wang K, Wang X, et al. The role of the gut microbiome and its metabolites in metabolic diseases[J]. Protein Cell, 2021, 12(5): 360-373.
[22]
Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(6): 356-365.
[23]
Shi J, Geng C, Sang M, et al. Effect of gastrointestinal microbiome and its diversity on the expression of tumor-infiltrating lymphocytes in breast cancer[J]. Oncol Lett, 2019, 17(6): 5050-5056.
[24]
Banerjee S, Wei Z, Tan F, et al. Distinct microbiological signatures associated with triple negative breast cancer[J]. Sci Rep, 2015, 5(1): 15162.
[25]
Thompson KJ, Ingle JN, Tang X, et al. A comprehensive analysis of breast cancer microbiota and host gene expression[J]. PLoS One, 2017, 12(11): e0188873.
[26]
Parida S, Wu S, Siddharth S, et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates notch and β-catenin axes[J]. Cancer Discov, 2021, 11(5): 1138-1157.
[27]
Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates[J]. Nat Rev Microbiol, 2021, 19(2): 77-94.
[28]
Toumazi D, El Daccache S, Constantinou C. An unexpected link: the role of mammary and gut microbiota on breast cancer development and management (review)[J]. Oncol Rep, 2021, 45(5): 80.
[29]
Luu TH, Bard JM, Carbonnelle D, et al. Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells[J]. Cell Oncol (Dordr), 2018, 41(1): 13-24.
[30]
Kovács P, Csonka T, Kovács T, et al. Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer[J]. Cancers (Basel), 2019, 11(9): 1255.
[31]
Zhu J, Liao M, Yao Z, et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome[J]. Microbiome, 2018, 6(1): 136.
[32]
Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition[J]. Arch Microbiol, 2018, 200(2): 203-217.
[33]
Devoy C, Flores BY, Tangney M. Understanding and harnessing triple negative breast cancer-related microbiota in oncology[J]. Front Oncol, 2022, 12: 1 020 121.
[34]
Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies[J]. Microbiome, 2018, 6(1): 92.
[35]
Rupert B. Trastuzumab-deruxtecan:an investigational agent for the treatment of HER2-positive breast cancer[J]. Expert Opin Investig Drugs, 2020, 29(9): 901-910.
[36]
Di Modica M, Gargari G, Regondi V, et al. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-Positive breast cancer[J]. Cancer Res, 2021, 81(8): 2195-2206.
[37]
Mikó E, Kovács T, Sebő É,et al. Microbiome-microbial metabolome-cancer cell interactions in breast cancer-familiar, but unexplored[J]. Cells, 2019, 8(4): 293.
[38]
Mamgain G, Patra P, Naithani M, et al. The role of microbiota in the development of cancer tumour cells and lymphoma of B and T cells[J]. Cureus, 2021, 13(10): e19047.
[39]
Liu T, Wu Y, Wang L, et al. A more robust gut microbiota in calorie-restricted mice is associated with attenuated intestinal injury caused by the chemotherapy drug cyclophosphamide[J]. mBio, 2019, 10(2): e02903-e02918.
[40]
Kurozumi S, Fujii T, Matsumoto H, et al. Significance of evaluating tumor-infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in breast cancer[J]. Med Mol Morphol, 2017, 50(4): 185-194.
[41]
Schmid P, Adams S, Rugo HS, et al. IMpassion130 trial investigators. atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer[J]. N Engl J Med, 2018, 379(22): 2108-2121.
[42]
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103.
[43]
Jin Y, Dong H, Xia L, et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC[J]. J Thorac Oncol, 2019, 14(8): 1378-1389.
[44]
Mao J, Wang D, Long J, et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers[J]. J Immunother Cancer, 2021, 9(12): e003334.
[45]
Kiousi DE, Kouroutzidou AZ, Neanidis K, et al. The role of the gut microbiome in cancer immunotherapy: current knowledge and future directions[J]. Cancers (Basel), 2023, 15(7): 2101.
[46]
Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota[J]. Cancer Lett, 2020, 469: 456-467.
[47]
Gerassy-Vainberg S, Blatt A, Danin-Poleg Y, et al. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction[J]. Gut, 2018, 67(1): 97-107.
[1] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[2] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[3] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[4] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[5] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[6] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[7] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[8] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[9] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[10] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[11] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[12] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[13] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[14] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[15] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?