切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 362 -365. doi: 10.3877/cma.j.issn.1674-0807.2023.06.006

综述

肠道微生物在乳腺癌中的研究进展
伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹()   
  1. 524000 湛江,广东医科大学第一临床医学院;521800 佛山,广东省佛山市第一人民医院乳腺科
    521800 佛山,广东省佛山市第一人民医院乳腺科
  • 收稿日期:2022-09-17 出版日期:2023-12-01
  • 通信作者: 周丹
  • 基金资助:
    广东省医学科研基金(2018102592229670); 登峰计划项目(2020B018); 广东省中医药局课题(20231324)

Gut microbiota in breast cancer

Qiuyuan Wu, Peixian Chen, Yuhua Deng   

  • Received:2022-09-17 Published:2023-12-01
引用本文:

伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.

Qiuyuan Wu, Peixian Chen, Yuhua Deng. Gut microbiota in breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(06): 362-365.

乳腺癌的发病机制目前尚未完全阐明。研究发现:肠道菌群与乳腺癌之间的联系尤为密切,能够通过影响雌激素水平、炎症免疫反应、肿瘤微环境等,参与乳腺癌的病理进展过程,并影响乳腺癌的治疗。本文总结了近年来肠道菌群在乳腺癌中的研究进展,希望能够为乳腺癌提供一种新的诊疗思路和潜在的治疗策略。

[1]
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA: A Cancer J Clin, 2023, 73(1): 17-48.
[2]
Hills RD, Pontefract BA, Mishcon HR, et al. Gut microbiome: profound implications for diet and disease[J]. Nutrients, 2019, 11(7): 1613.
[3]
Jaye K, Li CG, Bhuyan DJ. The complex interplay of gut microbiota with the five most common cancer types: from carcinogenesis to therapeutics to prognoses[J]. Crit Rev Oncol Hematol, 2021, 165: 103429.
[4]
Scott AJ, Alexander JL, Merrifield CA, et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis[J]. Gut, 2019, 68(9): 1624-1632.
[5]
AAlizadehmohajer N, Shojaeifar S, Nedaeinia R, et al. Association between the microbiota and women’s cancers-cause or consequences?[J]. Biomed Pharmacother, 2020, 127: 110203.
[6]
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65.
[7]
Yaghjyan L, Mai V, Darville LNF, et al. Associations of gut microbiome with endogenous estrogen levels in healthy postmenopausal women[J]. Cancer Causes Control, 2023, 34(10):873-881.
[8]
Wang N, Yang J, Han W, et al. Identifying distinctive tissue and fecal microbial signatures and the tumor-promoting effects of deoxycholic acid on breast cancer[J]. Front Cell Infect Microbiol, 2022, 12: 1029905.
[9]
Byrd DA, Vogtmann E, Wu Z, et al. Associations of fecal microbial profiles with breast cancer and nonmalignant breast disease in the Ghana Breast Health Study[J]. Int J Cancer, 2021, 148(11): 2712-2723.
[10]
Gravena AAF, Romeiro Lopes TC, Demitto MO, et al. The obesity and the risk of breast cancer among pre and postmenopausal women[J]. Asian Pac J Cancer Prev, 2018, 19(9): 2429-2436.
[11]
Zengul AG, Demark-Wahnefried W, Barnes S, et al. Associations between dietary fiber, the fecal microbiota and estrogen metabolism in postmenopausal women with breast cancer[J]. Nutr Cancer, 2021, 73(7): 1108-1117.
[12]
Sampsell K, Hao D, Reimer RA. The gut microbiota: a potential gateway to improved health outcomes in breast cancer treatment and survivorship[J]. Int J Mol Sci, 2020, 21(23): 9239.
[13]
Goedecke JH, Tootla M, Keswell D. Ethnic differences in regional adipose tissue oestrogen receptor gene expression[J]. Endocr Connect, 2019, 8(1): 32-38.
[14]
Sampsell K, Hao D, Reimer R. The gut microbiota: a potential gateway to improved health outcomes in breast cancer treatment and survivorship[J]. Int J Mol Sci, 2020, 21(23): 9239.
[15]
Amoroso C, Perillo F, Strati F, et al. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation[J]. Cells, 2020, 9(5): 1234.
[16]
Wells JM, Brummer RJ, Derrien M, et al. Homeostasis of the gut barrier and potential biomarkers[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312(3): G171-G193.
[17]
Rutkowski MR, Stephen TL, Svoronos N, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation[J]. Cancer Cell, 2015, 27(1): 27-40.
[18]
Mantovani A, Ponzetta A, Inforzato A, et al. Innate immunity, inflammation and tumour progression: double-edged swords[J]. J Intern Med, 2019, 285(5): 524-532.
[19]
Goedert JJ, Hua X, Bilelecka A, et al. Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota[J]. Br J Cancer, 2018, 118(4): 471-479.
[20]
Yang Y, Li L, Xu C, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis[J]. Gut, 2020, 70(8): 1495-1506.
[21]
Wu J, Wang K, Wang X, et al. The role of the gut microbiome and its metabolites in metabolic diseases[J]. Protein Cell, 2021, 12(5): 360-373.
[22]
Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(6): 356-365.
[23]
Shi J, Geng C, Sang M, et al. Effect of gastrointestinal microbiome and its diversity on the expression of tumor-infiltrating lymphocytes in breast cancer[J]. Oncol Lett, 2019, 17(6): 5050-5056.
[24]
Banerjee S, Wei Z, Tan F, et al. Distinct microbiological signatures associated with triple negative breast cancer[J]. Sci Rep, 2015, 5(1): 15162.
[25]
Thompson KJ, Ingle JN, Tang X, et al. A comprehensive analysis of breast cancer microbiota and host gene expression[J]. PLoS One, 2017, 12(11): e0188873.
[26]
Parida S, Wu S, Siddharth S, et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates notch and β-catenin axes[J]. Cancer Discov, 2021, 11(5): 1138-1157.
[27]
Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates[J]. Nat Rev Microbiol, 2021, 19(2): 77-94.
[28]
Toumazi D, El Daccache S, Constantinou C. An unexpected link: the role of mammary and gut microbiota on breast cancer development and management (review)[J]. Oncol Rep, 2021, 45(5): 80.
[29]
Luu TH, Bard JM, Carbonnelle D, et al. Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells[J]. Cell Oncol (Dordr), 2018, 41(1): 13-24.
[30]
Kovács P, Csonka T, Kovács T, et al. Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer[J]. Cancers (Basel), 2019, 11(9): 1255.
[31]
Zhu J, Liao M, Yao Z, et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome[J]. Microbiome, 2018, 6(1): 136.
[32]
Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition[J]. Arch Microbiol, 2018, 200(2): 203-217.
[33]
Devoy C, Flores BY, Tangney M. Understanding and harnessing triple negative breast cancer-related microbiota in oncology[J]. Front Oncol, 2022, 12: 1 020 121.
[34]
Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies[J]. Microbiome, 2018, 6(1): 92.
[35]
Rupert B. Trastuzumab-deruxtecan:an investigational agent for the treatment of HER2-positive breast cancer[J]. Expert Opin Investig Drugs, 2020, 29(9): 901-910.
[36]
Di Modica M, Gargari G, Regondi V, et al. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-Positive breast cancer[J]. Cancer Res, 2021, 81(8): 2195-2206.
[37]
Mikó E, Kovács T, Sebő É,et al. Microbiome-microbial metabolome-cancer cell interactions in breast cancer-familiar, but unexplored[J]. Cells, 2019, 8(4): 293.
[38]
Mamgain G, Patra P, Naithani M, et al. The role of microbiota in the development of cancer tumour cells and lymphoma of B and T cells[J]. Cureus, 2021, 13(10): e19047.
[39]
Liu T, Wu Y, Wang L, et al. A more robust gut microbiota in calorie-restricted mice is associated with attenuated intestinal injury caused by the chemotherapy drug cyclophosphamide[J]. mBio, 2019, 10(2): e02903-e02918.
[40]
Kurozumi S, Fujii T, Matsumoto H, et al. Significance of evaluating tumor-infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in breast cancer[J]. Med Mol Morphol, 2017, 50(4): 185-194.
[41]
Schmid P, Adams S, Rugo HS, et al. IMpassion130 trial investigators. atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer[J]. N Engl J Med, 2018, 379(22): 2108-2121.
[42]
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients[J]. Science, 2018, 359(6371): 97-103.
[43]
Jin Y, Dong H, Xia L, et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC[J]. J Thorac Oncol, 2019, 14(8): 1378-1389.
[44]
Mao J, Wang D, Long J, et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers[J]. J Immunother Cancer, 2021, 9(12): e003334.
[45]
Kiousi DE, Kouroutzidou AZ, Neanidis K, et al. The role of the gut microbiome in cancer immunotherapy: current knowledge and future directions[J]. Cancers (Basel), 2023, 15(7): 2101.
[46]
Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota[J]. Cancer Lett, 2020, 469: 456-467.
[47]
Gerassy-Vainberg S, Blatt A, Danin-Poleg Y, et al. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction[J]. Gut, 2018, 67(1): 97-107.
[1] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[4] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[5] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[6] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[7] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[8] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[9] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[10] 王磊, 李梦, 孙文利, 刘瑞, 王红春, 卢光泽, 赵颖, 郭进艳, 刘红星. 液相色谱质谱法对急性白血病患者血浆代谢组学的特征分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 850-857.
[11] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[12] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[13] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[14] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
[15] 周加军, 余永武, 周涵, 刘勇, 张凌. 甲状旁腺切除对继发性甲状旁腺功能亢进患者骨密度及骨代谢的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 706-710.
阅读次数
全文


摘要