切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 129 -135. doi: 10.3877/cma.j.issn.1674-0807.2023.03.001

专家论坛

抗体药物偶联物开创乳腺癌治疗新格局
齐晓伟, 叶松青()   
  1. 400038 重庆,陆军军医大学第一附属医院乳腺甲状腺外科
    350001 福州,福建省立医院肿瘤外科
  • 收稿日期:2023-02-20 出版日期:2023-06-01
  • 通信作者: 叶松青

Landscape of antibody-drug conjugates for breast cancer treatment

Xiaowei Qi, Songqing Ye()   

  1. Department of Breast and Thyroid Surgery, First Affiliated Hospital of Army Medical University, Chongqing 400038, China
    Department of Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
  • Received:2023-02-20 Published:2023-06-01
  • Corresponding author: Songqing Ye
引用本文:

齐晓伟, 叶松青. 抗体药物偶联物开创乳腺癌治疗新格局[J]. 中华乳腺病杂志(电子版), 2023, 17(03): 129-135.

Xiaowei Qi, Songqing Ye. Landscape of antibody-drug conjugates for breast cancer treatment[J]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(03): 129-135.

近年来,抗体药物偶联物(ADC)发展迅速,备受关注。作为一种有效的肿瘤靶向治疗药物,ADC兼具化疗药物强大的杀伤力与单克隆抗体药物高度的靶向性,疗效更好,不良反应更小。在乳腺癌领域,目前已有3种ADC获批国内上市,逐步改变乳腺癌治疗的格局。本文从ADC的研发历程、应用现状与未来展望3个方面进行总结,以期为ADC在乳腺癌中的临床应用及研究提供新思路。

In recent years, antibody-drug conjugate (ADC) has developed rapidly and attracted much attention. As an effective drug for targeted therapy of tumors, ADC has both the powerful lethality of chemotherapy and the high targeting ability of monoclonal antibody drugs, showing better efficacy and fewer side effects. In the field of breast cancer, three ADC products have been approved for marketing in China, which are gradually changing the landscape of breast cancer treatment. This article summarizes the development process of ADC, the therapeutic pattern reshaping of breast cancer, and future prospect of ADC application, so as to provide new insights for clinical application and research of ADC.

图1 抗体药物偶联物的基本结构及优化历程
表1 目前已获批上市的抗体药物偶联物
药物名称 靶点 单克隆抗体 连接子 毒素分子 适应证 国外上市 中国上市
吉妥珠单克隆抗体 CD33 人鼠嵌合IgG4 酸不稳定的腙键 卡奇霉素衍生物 急性髓系白血病  
维布妥昔单克隆抗体 CD30 人源化IgG1 酶可裂解的缬氨酸-瓜氨酸 甲基澳瑞他汀E CD30阳性霍奇金淋巴瘤
恩美曲妥珠单克隆抗体 HER-2 人源化IgG1 不可裂解的硫醚 美登素1 HER-2阳性乳腺癌
奥加伊妥珠单克隆抗体 CD22 人源化IgG4 酸不稳定的腙键 卡奇霉素衍生物 B细胞前体急性淋巴细胞白血病  
莫塞妥莫单克隆抗体 CD22 可裂解肽 PE38(Pasudotox) 成年复发或难治毛细胞白血病  
泊洛妥珠单克隆抗体 CD79b 人源化IgG1 酶可裂解的缬氨酸-瓜氨酸 甲基澳瑞他汀E 弥漫性大B细胞淋巴瘤  
维汀-恩弗妥单克隆抗体 Nectin-4 人源化IgG1 酶可裂解的缬氨酸-瓜氨酸 甲基澳瑞他汀E 尿路上皮癌  
德曲妥珠单克隆抗体 HER-2 人源化IgG1 可裂解的四肽 Deruxtecan(Dxd) HER-2阳性及低表达乳腺癌
戈沙妥珠单克隆抗体 Trop-2 人源化IgG1 可裂解CL2A SN-38 三阴性乳腺癌
贝兰他单克隆抗体 BCMA 人源化IgG1 不可裂解的马来酰亚胺 甲基澳瑞他汀F 多发性骨髓瘤  
沙西妥昔单克隆抗体 EGFR IRDye700DX 不可切除的局部晚期或复发性头颈癌  
朗妥昔单克隆抗体 CD19 PEG-Val-Ala-PABC PBD二聚体SG3199 复发性或难治性弥漫性大B细胞淋巴瘤  
维迪西妥单克隆抗体 HER-2 人源化IgG1 酶可裂解的缬氨酸-瓜氨酸 甲基澳瑞他汀E HER-2过表达的胃癌、尿路上皮癌[HER-2(2+)/(3+)]  
替索单克隆抗体 转铁蛋白 人源化IgG1 酶可裂解的缬氨酸-瓜氨酸 甲基澳瑞他汀E 宫颈癌  
Mirvetuximab soravtansine-gynx 叶酸受体 美登素4 卵巢上皮性癌  
表2 抗体药物偶联物用于HER-2低表达乳腺癌治疗的相关临床研究汇总
表3 抗体药物偶联物在乳腺癌晚期一线、辅助强化与新辅助领域的研究
[1]
Rinnerthaler G, Gampenrieder SP, Greil R. HER2 directed antibody-drug-conjugates beyond T-DM1 in breast cancer[J]. Int J Mol Sci, 2019, 20(5): 1115.
[2]
Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy[J]. Nat Rev Clin Oncol, 2021, 18(6): 327-344.
[3]
Norsworthy KJ, Ko CW, Lee JE, et al. FDA Approval Summary: Mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia[J]. Oncologist, 2018, 23(9): 1103-1108.
[4]
Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody-drug conjugates[J]. Nat Rev Drug Discov, 2017, 16(5): 315-337.
[5]
Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer[J]. N Engl J Med, 2012, 367(19): 1783-1791.
[6]
Joubert N, Beck A, Dumontet C, et al. Antibody-drug conjugates: the last decade[J]. Pharmaceuticals (Basel), 2020, 13(9): 245.
[7]
Nakada T, Sugihara K, Jikoh T, et al. The Latest research and development into the antibody-drug conjugate, [fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 cancer therapy[J]. Chem Pharm Bull (Tokyo), 2019, 67(3): 173-185.
[8]
Yao X, Jiang J, Wang X, et al. A novel humanized anti-HER2 antibody conjugated with MMAE exerts potent anti-tumor activity[J]. Breast Cancer Res Treat, 2015, 153(1): 123-133.
[9]
国家药品监督管理局. 国家药监局附条件批准注射用维迪西妥单抗上市[EB/OL][2021-06-09].

URL    
[10]
Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer[J]. Nat Rev Clin Oncol, 2020, 17(1): 33-48.
[11]
Baselga J, Cortés J, Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer[J]. N Engl J Med, 2012, 366(2): 109-119.
[12]
Xu B, Yan M, Ma F, et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial[J]. Lancet Oncol, 2021, 22(3): 351-360.
[13]
Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer[J]. N Engl J Med, 2006, 355(26): 2733-2743.
[14]
Saura C, Oliveira M, Feng YH, et al. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: phase III NALA trial[J]. J Clin Oncol, 2020, 38(27): 3138-3149.
[15]
Modi S, Saura C, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer[J]. N Engl J Med2020, 382(7):610-621.
[16]
Hurvitz SA, Hegg R, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: updated results from DESTINY-Breast03, a randomised, open-label, phase 3 trial[J]. Lancet, 2023, 401(10371): 105-117.
[17]
Gradishar WJ, Moran MS, Abraham J, et al. Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(6): 691-722.
[18]
Gradishar WJ, Moran MS, Abraham J, et al. NCCN Guidelines®insights: breast cancer, version 4.2023[J]. J Natl Compr Canc Netw, 2023, 21(6): 594-608.
[19]
Yan M, Bian L, Hu X, et al. Pyrotinib plus capecitabine for human epidermal growth factor receptor 2-positive metastatic breast cancer after trastuzumab and taxanes (PHENIX): a randomized, double-blind, placebo-controlled phase 3 study[EB/OL].[2023-01-20].

URL    
[20]
Tarantino P, Hamilton E, Tolaney SM, et al. HER2-low breast cancer: pathological and clinical landscape[J]. J Clin Oncol, 2020, 38(17): 1951-1962.
[21]
Modi S, Jacot W, Yamashita T, et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer[J]. N Engl J Med, 2022, 387(1): 9-20.
[22]
Xu Y, Wang Y, Gong J, et al. Phase I study of the recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate RC48-ADC in patients with HER2-positive advanced solid tumors[J]. Gastric Cancer, 2021, 24(4): 913-925.
[23]
Zhang J, Liu R, Gao S, et al. Phase I study of A166, an antibody-drug conjugate in advanced HER2-expressing solid tumours[J]. NPJ Breast Cancer, 2023, 9(1): 28.
[24]
中国抗癌协会国际医疗与交流分会,中国医师协会肿瘤医师分会乳腺癌学组. 人表皮生长因子受体2低表达乳腺癌临床诊疗共识(2022版) [J]. 中华肿瘤杂志2022, 44(12): 1288-1295.
[25]
Steuer CE, Hayashi H, Su WC, et al. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in advanced/metastatic non-small cell lung cancer (NSCLC) without EGFR-activating mutations[J]. J Clin Oncol, 2022, 40: 9017.
[26]
Haikala HM, Jänne PA. Thirty years of HER3: from basic biology to therapeutic interventions[J]. Clin Cancer Res, 2021, 27(13): 3528-3539.
[27]
Bardia A, Mayer IA, Vahdat LT, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer[J]. N Engl J Med, 2019, 380(8): 741-751.
[28]
Shastry M, Jacob S, Rugo HS, et al. Antibody-drug conjugates targeting TROP-2: Clinical development in metastatic breast cancer[J]. Breast, 2022, 66: 169-177.
[29]
Rugo HS, Bardia A, Tolaney SM, et al. TROPiCS-02: A Phase III study investigating sacituzumab govitecan in the treatment of HR+/HER2- metastatic breast cancer[J]. Future Oncol, 2020, 16(12): 705-715.
[30]
Lorusso D, Vergote I, O’Cearbhaill RE, et al. Tisotumab vedotin (TV) + pembrolizumab (pembro) in first-line (1L) recurrent or metastatic cervical cancer (r/mCC): Interim results of ENGOT Cx8/GOG 3024/innovaTV 205[J]. J Clin Oncol, 2022, 40:5507.
[31]
Tarantino P, Carmagnani Pestana R, Corti C, et al. Antibody-drug conjugates: Smart chemotherapy delivery across tumor histologies[J]. CA Cancer J Clin, 2022, 72(2): 165-182.
[32]
Hafeez U, Parakh S, Gan HK, et al. Antibody-drug conjugates for cancer therapy[J]. Molecules, 2020, 25(20): 4764.
[33]
Coates JT, Sun S, Leshchiner I, et al. Parallel genomic alterations of antigen and payload targets mediate polyclonal acquired clinical resistance to sacituzumab govitecan in triple-negative breast cancer[J]. Cancer Discov, 2021, 11(10): 2436-2445.
[34]
Fuentes-Antrás J, Genta S, Vijenthira A, et al. Antibody-drug conjugates: in search of partners of choice[J]. Trends Cancer, 2023, 9(4): 339-354.
[35]
Cortés J, Diéras V, Lorenzen S, et al. Efficacy and safety of trastuzumab emtansine plus capecitabine vs trastuzumab emtansine alone in patients with previously treated ERBB2 (HER2)-positive metastatic breast cancer: a phase 1 and randomized phase 2 trial[J]. JAMA Oncol, 2020, 6(8): 1203-1209.
[36]
Emens LA, Esteva FJ, Beresford M, et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial[J]. Lancet Oncol, 2020, 21(10): 1283-1295.
[37]
Chew BH, Vos RC, Stellato RK, et al. Diabetes-related distress and depressive symptoms are not merely negative over a 3-year period in malaysian adults with type 2 diabetes mellitus receiving regular primary diabetes care[J]. Front Psychol, 2017, 8: 1834.
[38]
Shim H. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations[J]. Biomolecules, 2020, 10(3): 360.
[39]
Yamazaki CM, Yamaguchi A, Anami Y, et al. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance[J]. Nat Commun, 2021, 12(1): 3528.
[40]
Ecaterina ID, Manish RS, Richard DC, et al. Phase 1/2 study of a novel HER2 targeting TLR7/8 immune-stimulating antibody conjugate (ISAC), BDC-1001, as a single agent and in combination with an immune checkpoint inhibitor in patients with advanced HER2-expressing solid tumors[J]. Cancer Res, 2021, 81 (4_Supplement): OT-03-02.
[41]
Subbiah V, Erwin W, Mawlawi O, et al. Phase I study of P-cadherin-targeted radioimmunotherapy with 90Y-FF-21101 monoclonal antibody in solid tumors[J]. Clin Cancer Res, 2020, 26(22): 5830-5842.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要