[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin,2021,1(3):209-249.
|
[2] |
Hua H, Kong Q, Zhang H, et al. Targeting mTOR for cancer therapy[J]. J Hematol Oncol, 2019, 12(1):71.
|
[3] |
Shi Y, Zhou C, Lu H, et al. Ceramide synthase 6 predicts poor prognosis and activates the AKT/mTOR/4EBP1 pathway in high-grade serous ovarian cancer[J]. Am J Transl Res, 2020, 12(9):5924-5939.
|
[4] |
An QW, Nicolaides TP, Weiss WA. Inhibiting 4EBP1 in glioblastoma[J]. Clin Cancer Res,2018, 24(1):14-21.
|
[5] |
Merrick WC. eIF4F: a retrospective[J].J Biol Chem, 2015, 290(40):24 091-24 099.
|
[6] |
Fan Q, Aksoy O, Wong RA, et al. A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma[J]. Cancer Cell, 2017, 31(3):424-435.
|
[7] |
Rutkovsky AC, Yeh ES, Guest ST,et al. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer[J]. BMC Cancer, 2019, 19(1):491.
|
[8] |
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes[J].Nat Biotechnol, 2014, 32(4):347-355.
|
[9] |
Sen ND, Zhou F, Harris MS, et al. eIF4B stimulates translation of long mRNAs with structured 5′ UTRs and low closed-loop potential but weak dependence on eIF4G[J]. Proc Natl Acad Sci USA, 2016, 113(38):10 464-10 472.
|
[10] |
Romagnoli A, D’Agostino M, Ardiccioni C, et al. Control of the eIF4E activity: structural insights and pharmacological implications[J]. Cell Mol Life Sci, 2021, 78(21-22):6869-6885.
|
[11] |
Böhm R, Imseng S, Jakob RP, et al. The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1[J]. Molecular Cell, 2021, 81(11):2403-2416.e5.
|
[12] |
Saramäki O, Willi N, Bratt O, et al Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer[J]. Am J Pathol, 2001, 159(6):2089-2094.
|
[13] |
Marash L, Liberman N, Henis-Korenblit S, et al. DAP5 promotes cap-independent translation of Bcl-2 and CDK1 to facilitate cell survival during mtosis[J]. Mol Cell, 2008, 30(4):447-459.
|
[14] |
Tiu GC, Kerr CH, Forester CM, et al. A p53-dependent translational program directs tissue-selective phenotypes in a model of ribosomopathies[J]. Develop Cell, 2021, 56(14):2089-2102.
|
[15] |
Zhou X, Tan M, Stone Hawthorne V, et al. Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers[J]. Clin Cancer Res, 2004, 10(20): 6779-6788.
|
[16] |
Luo W, Wang F, Luo H, et al. Arctigenin inhibits human breast cancer cell proliferation, migratory and invasive abilities and epithelial to mesenchymal transition by targeting 4EBP1[J]. Exp Ther Med, 2021, 21(6): 547.
|
[17] |
Karlsson E, Pérez-Tenorio G, Amin R, et al. The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised stockholm tamoxifen trials[J]. Breast Cancer Res, 2013, 15(5): R96.
|
[18] |
Naito S, Ichiyanagi O, Ito H, et al. Expression of total and phospho 4EBP1 in metastatic and non-metastatic renal cell carcinoma[J]. Oncol Lett, 2019, 17(4): 3910-3918
|
[19] |
Ma Y, Zhang L, Huang X. Genome modification by CRISPR/Cas9[J]. FEBS J, 2014, 281(23):5186-5193.
|
[20] |
Rasmussen SB, Kordon E, Callahan R, et al. Evidence for the transforming activity of a truncated Int6 gene, in vitro[J]. Oncogene, 2001, 20(38): 5291-5301.
|