切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 231 -234. doi: 10.3877/cma.j.issn.1674-0807.2024.04.007

综述

组蛋白乳酸化修饰及其在乳腺癌中的研究进展
姚宁宁1, 蒋丽2, 张小霞3, 陆玉成1,()   
  1. 1. 276000 山东省临沂市人民医院生物样本库
    2. 276000 山东省临沂市人民医院甲状腺外科
    3. 276000 山东省临沂市人民医院乳腺科
  • 收稿日期:2023-11-24 出版日期:2024-08-01
  • 通信作者: 陆玉成
  • 基金资助:
    山东省自然基金面上项目(ZR2023MH292); 徐州医科大学附属医院发展基金(XYFM202346)

Histone lactation modification and its research progress in breast cancer

Ningning Yao, Li Jiang, Xiaoxia Zhang   

  • Received:2023-11-24 Published:2024-08-01
引用本文:

姚宁宁, 蒋丽, 张小霞, 陆玉成. 组蛋白乳酸化修饰及其在乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 231-234.

Ningning Yao, Li Jiang, Xiaoxia Zhang. Histone lactation modification and its research progress in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(04): 231-234.

表观遗传修饰的改变在乳腺癌的发生与发展过程中发挥着重要作用,而组蛋白修饰是表观遗传修饰的主要类型之一。有氧糖酵解为癌细胞的无限增殖提供能量,糖酵解产生的乳酸能够促进组蛋白乳酸化修饰的发生,进而影响乳腺癌的发生发展进程。因此,抑制组蛋白乳酸化修饰的发生能够提高乳腺癌的治疗效果。本文将对组蛋白乳酸化修饰以及其在乳腺癌中的最新研究进展进行综述。

图1 组蛋白的乳酸化修饰
[1]
IARC. Global cancer burden growing, amidst mounting need for services [M]. Lyon:International Agency for Research on Cancer,2024.
[2]
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 202474(3):229-263.
[3]
Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer[J]. Nat Rev Dis Primers20195(1):66.
[4]
Davalos V, Esteller M. Cancer epigenetics in clinical practice[J]. CA Cancer J Clin202373(4):376-424.
[5]
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature2019574(7779):575-580.
[6]
Millan-Zambrano G, Burton A, Bannister AJ, et al. Histone post-translational modifications - cause and consequence of genome function[J]. Nat Rev Genet202223(9):563-580.
[7]
Wang N, Wang W, Wang X, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction[J]. Circ Res2022131(11):893-908.
[8]
Moreno-Yruela C, Baek M, Monda F, et al. Chiral posttranslational modification to lysine epsilon-amino groups[J]. Acc Chem Res202255(10):1456-1466.
[9]
Yang Z, Yan C, Ma J, et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma[J]. Nat Metab20235(1):61-79.
[10]
Xie Y, Hu H, Liu M, et al. The role and mechanism of histone lactylation in health and diseases[J]. Front Genet202213:949252.
[11]
Xu H, Wu M, Ma X, et al. Function and mechanism of novel histone posttranslational modifications in health and disease[J]. Biomed Res Int20212021:6635225.
[12]
Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease[J]. Signal Transduct Target Ther20227(1):305.
[13]
Jiang P, Ning W, Shi Y, et al. FSL-Kla: a few-shot learning-based multi-feature hybrid system for lactylation site prediction[J]. Comput Struct Biotechnol J202119:4497-4509.
[14]
Bhagat TD, Von Ahrens D, Dawlaty M, et al. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts[J]. Elife20198:e50663.
[15]
Sun K, Tang S, Hou Y, et al. Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling[J]. EBioMedicine201941:370-383.
[16]
Qiu Z, Wang L, Liu H. Hsa_circ_0001982 promotes the progression of breast cancer through miR-1287-5p/MUC19 axis under hypoxia[J]. World J Surg Oncol202119(1):161.
[17]
Castagnoli L, Iorio E, Dugo M, et al. Intratumor lactate levels reflect HER2 addiction status in HER2-positive breast cancer[J]. J Cell Physiol2019234(2):1768-1779.
[18]
Longhitano L, Forte S, Orlando L, et al. The crosstalk between GPR81/IGFBP6 promotes breast cancer progression by modulating lactate metabolism and oxidative stress[J]. Antioxidants (Basel)202211(2):275.
[19]
Brown TP, Bhattacharjee P, Ramachandran S, et al. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment[J]. Oncogene202039(16):3292-3304.
[20]
Ishihara S, Hata K, Hirose K, et al. The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer[J]. Sci Rep202212(1):6261.
[21]
San-Millan I, Julian CG, Matarazzo C, et al. Is lactate an oncometabolite? Evidence supporting a role for lactate in the regulation of transcriptional activity of cancer-related genes in MCF7 breast cancer cells[J]. Front Oncol20199:1536.
[22]
Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma[J]. Genome Biol202122(1):85.
[23]
Chen L, Huang L, Gu Y, et al. Lactate-lactylation hands between metabolic reprogramming and immunosuppression[J]. Int J Mol Sci202223(19):11943.
[24]
Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells[J]. Mol Cell202282(9):1660-1677.
[25]
Tian LR, Lin MZ, Zhong HH, et al. Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy[J]. Biomater Sci202210(14):3892-3900.
[26]
Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and warburg phenomenon[J]. Pharmacol Ther2020206:107451.
[27]
Chen Y, Wu J, Zhai L, et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation[J]. Cell2024187(2):294-311.
[28]
Deng J, Liao X. Lysine lactylation (Kla) might be a novel therapeutic target for breast cancer[J]. BMC Med Genomics202316(1):283.
[29]
Liu X, Liu H, Zeng L, et al. BRCA1 overexpression attenuates breast cancer cell growth and migration by regulating the pyruvate kinase M2-mediated Warburg effect via the PI3K/AKT signaling pathway[J]. PeerJ202210:e14052.
[30]
Jiang Y, Zhang M, Yu D, et al. CircRBM33 downregulation inhibits hypoxia-induced glycolysis and promotes apoptosis of breast cancer cells via a microRNA-542-3p/HIF-1α axis[J]. Cell Death Discovery20228(1):126.
[31]
Wang W, He X, Wang Y, et al. LINC01605 promotes aerobic glycolysis through lactate dehydrogenase a in triple-negative breast cancer[J]. Cancer Sci2022113(8):2484-2495.
[32]
Zu Y, Chen XF, Li Q, et al. PGC-1alpha activates SIRT3 to modulate cell proliferation and glycolytic metabolism in breast cancer[J]. Neoplasma202168(2):352-361.
[33]
Zhou Y, Niu W, Luo Y, et al. p53/Lactate dehydrogenase a axis negatively regulates aerobic glycolysis and tumor progression in breast cancer expressing wild-type p53[J]. Cancer Sci2019110(3):939-949.
[34]
Jin J, Qiu S, Wang P, et al. Cardamonin inhibits breast cancer growth by repressing HIF-1alpha-dependent metabolic reprogramming[J]. J Exp Clin Cancer Res201938(1):377.
[35]
Pandkar MR, Sinha S, Samaiya A, et al. Oncometabolite lactate enhances breast cancer progression by orchestrating histone lactylation-dependent c-Myc expression[J]. Transl Oncol202337:101758.
[36]
Zhao Y, Zhong R, Deng C, et al. Circle RNA circABCB10 modulates PFN2 to promote breast cancer progression, as well as aggravate radioresistance through facilitating glycolytic metabolism via miR-223-3p[J]. Cancer Biother Radiopharm202136(6):477-490.
[37]
Jin L, Guo Y, Chen J, et al. Lactate receptor HCAR1 regulates cell growth, metastasis and maintenance of cancer-specific energy metabolism in breast cancer cells[J]. Mol Med Rep202226(2):268.
[38]
Zong S, Dai W, Fang W, et al. SIK2 promotes cisplatin resistance induced by aerobic glycolysis in breast cancer cells through PI3K/AKT/mTOR signaling pathway[J]. Biosci Rep2020:R20201302.
[39]
Li F, Zhang H, Huang Y, et al. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer[J]. Drug Resist Updat202473:101059.
[40]
Li W, Zhou C, Yu L, et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer[J]. Autophagy202420(1):114-130.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?