切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 235 -240. doi: 10.3877/cma.j.issn.1674-0807.2024.04.008

综述

miRNA-192家族在乳腺癌中的作用机制及诊断价值
于溟璇1, 杜华2, 张彩虹1, 师迎旭1,()   
  1. 1. 010110 呼和浩特市,内蒙古医科大学第一临床医学院;010110 呼和浩特市,内蒙古医科大学附属医院检验科
    2. 010110 呼和浩特市,内蒙古医科大学基础医学院病理教研室;010110 呼和浩特市,内蒙古医科大学附属医院检验科
  • 收稿日期:2023-12-18 出版日期:2024-08-01
  • 通信作者: 师迎旭
  • 基金资助:
    内蒙古自治区自然科学基金资助项目(2021MS08093、2024MS08069); 内蒙古医科大学面上项目(YKD2021MS006)

Role of miRNA-192 family in breast cancer and its diagnostic value

MingXuan Yu, Hua Du, Caihong Zhang   

  • Received:2023-12-18 Published:2024-08-01
引用本文:

于溟璇, 杜华, 张彩虹, 师迎旭. miRNA-192家族在乳腺癌中的作用机制及诊断价值[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 235-240.

MingXuan Yu, Hua Du, Caihong Zhang. Role of miRNA-192 family in breast cancer and its diagnostic value[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(04): 235-240.

微RNA (miRNA,miR)-192家族,包括miR-192、miR-194和miR-215,是一组在进化上高度保守的小RNA分子,它们在染色体上的位置紧密相关,其中miR-192和miR-215具有非常相似的种子序列。越来越多的研究表明,miR-192家族可能在乳腺癌的发展过程中起着关键作用。这些miRNA分子通过多种机制参与调控乳腺癌细胞的增殖、凋亡、代谢、侵袭和转移,对乳腺癌的发展和预后具有重要影响。因此,笔者对miR-192家族在乳腺癌中的作用进行全面总结,不仅能加深对乳腺癌发病机制的理解,还可能为开发新的诊断工具和治疗策略提供有价值的线索。通过总结这些miRNA家族成员的共性和特性,可以为乳腺癌的临床治疗和基础医学研究提供参考。

图1 miR-192家族调控乳腺癌细胞生物学功能的分子机制注:TSA为曲古抑菌素A;PPIA为亲环蛋白A;JNK为c-Jun N末端激酶;MDM2为小鼠双微体2;p21为细胞周期蛋白依赖性激酶抑制剂1A;casepase9为半胱天冬酶9;BAD为细胞死亡相关的BCL2的激动剂;CAV1为小窝蛋白1;ARHGAP19为Rho GTP酶激活蛋白19;BMP6为骨形态发生蛋白6;ERα为雌激素受体α;RB1为RB转录辅阻遏蛋白1;EF1为延长因子1;DHA为二十二碳六烯酸;talin2为踝蛋白2;AKT2为丝氨酸/苏氨酸激酶2;Bmi-1为多梳无名指假基因1;SOX-5为Sry相关高迁移率组盒5;FOXA1为叉头框蛋白A1;ZEB1为锌指同源盒1B;Vimentin为波形蛋白;MMP-9为基质金属蛋白酶9;MMP-2为基质金属蛋白酶2;lncRNA-XIST为X(非活性)特异性转录本;MEF2C为肌细胞增强因子2C;Fbxw-7为F-box/WD重复序列蛋白7;cyclin D为细胞周期蛋白D;cyclin E为细胞周期蛋白E;SOX-17为Sry相关高迁移率组盒17;β-catenin为β连环蛋白;p-β-catenin为磷酸化的β连环蛋白;PD-L1为程序性死亡配体1;PD-1为程序性死亡受体1;AI-MPS为碱提取菌丝体多糖;RAD54B为RAD54同源物B;SREBP1为固醇调节元件结合蛋白1;lncRNA-CDC6为lncRNA-细胞分裂周期6;CDC6为细胞分裂周期6;lncRNA CAS6-AS1为生长停滞特异性蛋白6的反义RNA1;SOX-9为Sry相关高迁移率组盒9;AKT1为丝氨酸/苏氨酸激酶1;Pax-5为配对盒5;ALCAM为活化的白细胞细胞黏附分子;CTNNBIP1为β连环蛋白的相互作用蛋白1;DICER1为核糖核酸酶Ⅲ Dicer1;DYRK3为双特异性酪氨酸磷酸化调节激酶3;EREG为表皮调节蛋白;FNDC3B为含有3B的纤连蛋白Ⅲ型结构域;ZEB2为锌指同源盒2B;?表示此通路具体机制尚不清楚
[1]
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants [J]. Chin Med J (Engl), 2022, 135(5): 584-590.
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[3]
Maomao C, He L, Dianqin S, et al. Current cancer burden in China: epidemiology, etiology, and prevention [J]. Cancer Biol Med, 2022, 19(8): 1121-1138.
[4]
Peng Y, Croce CM. The role of MicroRNAs in human cancer [J]. Signal Transduct Target Ther, 2016, 1: 15 004.
[5]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-297.
[6]
Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact [J]. J Clin Oncol, 2009, 27(34): 5848-5856.
[7]
Mishan MA, Tabari MAK, Parnian J, et al. Functional mechanisms of miR-192 family in cancer [J]. Genes Chromosomes Cancer, 2020, 59(12): 722-735
[8]
Khella HW, Bakhet M, Allo G, et al. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma [J]. Carcinogenesis, 2013, 34(10): 2231-2239.
[9]
Kabekkodu SP, Shukla V, Varghese VK, et al. Clustered miRNAs and their role in biological functions and diseases [J]. Biol Rev Camb Philos Soc, 2018, 93(4): 1955-1986.
[10]
Wang J, Haubrock M, Cao KM, et al. Regulatory coordination of clustered microRNAs based on microRNA-transcription factor regulatory network [J]. BMC Syst Biol, 2011, 5: 199.
[11]
Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs [J]. Nucleic Acids Res, 2004, 32(22): e188.
[12]
Komatsu S, Kitai H, Suzuki HI. Network regulation of microRNA biogenesis and target interaction [J]. Cells, 2023, 12(2):306.
[13]
Hino K, Tsuchiya K, Fukao T, et al. Inducible expression of microRNA-194 is regulated by HNF-1alpha during intestinal epithelial cell differentiation [J]. RNA, 2008, 14(7): 1433-1442.
[14]
Jenkins RH, Martin J, Phillips AO, et al. Transforming growth factor β1 represses proximal tubular cell microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding [J]. Biochem J, 2012, 443(2): 407-416.
[15]
Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers [J]. Nature, 2005, 435(7043): 834-838.
[16]
Lian J, Jing Y, Dong Q, et al. miR-192, a prognostic indicator, targets the SLC39A6/SNAIL pathway to reduce tumor metastasis in human hepatocellular carcinoma [J]. Oncotarget, 2016, 7(3): 2672-2683.
[17]
Qiu L, Wang T, Ge Q, et al. Circular RNA signature in hepatocellular carcinoma [J]. J Cancer, 2019, 10(15): 3361-3372.
[18]
Gu Y, Wei X, Sun Y, et al. miR-192-5p silencing by genetic aberrations is a key event in hepatocellular carcinomas with cancer stem cell features [J]. Cancer Res, 2019, 79(5): 941-953.
[19]
Moratin J, Hartmann S, Brands RC, et al. MicroRNA expression correlates with disease recurrence and overall survival in oral squamous cell carcinoma [J]. J Craniomaxillofac Surg, 2019, 47(3): 523-529.
[20]
Wang Y, Yang L, Chen T, et al. A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis [J]. Mol Cancer, 2019, 18(1): 28.
[21]
Meng X, Li Z, Zhou S, et al. miR-194 suppresses high glucose-induced non-small cell lung cancer cell progression by targeting NFAT5 [J]. Thorac Cancer, 2019, 10(5): 1051-1059.
[22]
Wang C, Li X, Zhang L, et al. miR-194-5p down-regulates tumor cell PD-L1 expression and promotes anti-tumor immunity in pancreatic cancer [J]. Int Immunopharmacol, 2021, 97: 107 822.
[23]
Zhao J, Wang Y, Wang Y, et al. miR-194-3p represses the docetaxel resistance in colon cancer by targeting KLK10 [J]. Pathol Res Pract, 2022, 236: 153 962.
[24]
Cai X, Peng D, Wei H, et al. miR-215 suppresses proliferation and migration of non-small cell lung cancer cells [J]. Oncol Lett, 2017, 13(4): 2349-2353.
[25]
Han J, Zhang M, Nie C, et al. miR-215 suppresses papillary thyroid cancer proliferation, migration, and invasion through the AKT/GSK-3β/Snail signaling by targeting ARFGEF1 [J]. Cell Death Dis, 2019, 10(3): 195.
[26]
Song Z, Bai J, Jiang R, et al. MicroRNA-215-5p promotes proliferation, invasion, and inhibits apoptosis in liposarcoma cells by targeting MDM2 [J]. Cancer Med, 2023, 12(12): 13 455-13 470.
[27]
Gao X, Cai Y, An R. miR-215 promotes epithelial to mesenchymal transition and proliferation by regulating LEFTY2 in endometrial cancer [J]. Int J Mol Med, 2018, 42(3): 1229-1236.
[28]
Zang Y, Wang T, Pan J, et al. miR-215 promotes cell migration and invasion of gastric cancer cell lines by targeting FOXO1 [J]. Neoplasma, 2017, 64(4): 579-587.
[29]
Moore R, Ooi HK, Kang T, et al. MiR-192-mediated positive feedback loop controls the robustness of stress-induced p53 oscillations in breast cancer cells [J]. PLoS Comput Biol, 2015, 11(12): e1004653.
[30]
Braun CJ, Zhang X, Savelyeva I, et al. p53-responsive micrornas 192 and 215 are capable of inducing cell cycle arrest [J]. Cancer Res, 2008, 68(24): 10 094-10 104.
[31]
Chen P, Feng Y, Zhang H, et al. MicroRNA-192 inhibits cell proliferation and induces apoptosis in human breast cancer by targeting caveolin 1 [J]. Oncol Rep, 2019, 42(5): 1667-1676.
[32]
Vajen B, Greiwe L, Schäffer V, et al. MicroRNA-192-5p inhibits migration of triple negative breast cancer cells and directly regulates Rho GTPase activating protein 19 [J]. Genes Chromosomes Cancer, 2021, 60(11): 733-742.
[33]
Zhang Y, He Y, Lu LL, et al. miRNA-192-5p impacts the sensitivity of breast cancer cells to doxorubicin via targeting peptidylprolyl isomerase A [J]. Kaohsiung J Med Sci, 2019, 35(1): 17-23.
[34]
Kim YS, Park SJ, Lee YS, et al. miRNAs involved in LY6K and estrogen receptor α contribute to tamoxifen-susceptibility in breast cancer [J]. Oncotarget, 2016, 7(27): 42 261-42 273.
[35]
Iizuka D, Imaoka T, Nishimura M, et al. Aberrant microRNA expression in radiation-induced rat mammary cancer: the potential role of miR-194 overexpression in cancer cell proliferation [J]. Radiat Res, 2013, 179(2): 151-159.
[36]
Chen Y, Wei H, Liu Y, et al. Promotional effect of microRNA-194 on breast cancer cells via targeting F-box/WD repeat-containing protein 7 [J]. Oncol Lett, 2018, 15(4): 4439-4444.
[37]
Yang F, Xiao Z, Zhang S. Knockdown of miR-194-5p inhibits cell proliferation, migration and invasion in breast cancer by regulating the Wnt/β-catenin signaling pathway [J]. Int J Mol Med, 2018, 42(6): 3355-3363.
[38]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy [J]. Nat Rev Cancer, 2012, 12(4): 252-264.
[39]
Hamed MM, Handoussa H, Hussein NH, et al. Oleuropin controls miR-194/XIST/PD-L1 loop in triple negative breast cancer: New role of nutri-epigenetics in immune-oncology [J]. Life Sci, 2021, 277: 119 353.
[40]
Sereno M, Haskó J, Molnár K, et al. Downregulation of circulating miR 802-5p and miR 194-5p and upregulation of brain MEF2C along breast cancer brain metastasization [J]. Mol Oncol, 2020, 14(3): 520-538.
[41]
Yen YT, Yang JC, Chang JB, et al. Down-regulation of miR-194-5p for predicting metastasis in breast cancer cells [J]. Int J Mol Sci, 2021, 23(1): 325.
[42]
Le XF, Almeida MI, Mao W, et al. Modulation of microRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer [J]. PLoS One, 2012, 7(7): e41170.
[43]
Javadian M, Shekari N, Soltani-Zangbar MS, et al. Docosahexaenoic acid suppresses migration of triple-negative breast cancer cell through targeting metastasis-related genes and microRNA under normoxic and hypoxic conditions [J]. J Cell Biochem, 2020, 121(3): 2416-2427.
[44]
Elieh Ali Komi D, Shekari N, Soofian-Kordkandi P, et al. Docosahexaenoic acid (DHA) and linoleic acid (LA) modulate the expression of breast cancer involved miRNAs in MDA-MB-231 cell line [J]. Clin Nutr ESPEN, 2021, 46: 477-483.
[45]
Wang M, Liao J, Tan C, et al. Integrated study of miR-215 promoting breast cancer cell apoptosis by targeting RAD54B [J]. J Cell Mol Med, 2021, 25(7): 3327-3338.
[46]
Gao JB, Zhu MN, Zhu XL. miRNA-215-5p suppresses the aggressiveness of breast cancer cells by targeting Sox9 [J]. FEBS Open Bio, 2019, 9(11): 1957-1967.
[47]
Yao J, Zhang P, Li J, et al. MicroRNA-215 acts as a tumor suppressor in breast cancer by targeting AKT serine/threonine kinase 1 [J]. Oncol Lett, 2017, 14(1): 1097-1104.
[48]
Leblanc N, Harquail J, Crapoulet N, et al. Pax-5 inhibits breast cancer proliferation through miR-215 up-regulation [J]. Anticancer Res, 2018, 38(9): 5013-5026.
[49]
Wu CL, Xu LL, Peng J, et al. Al-MPS obstructs EMT in breast cancer by inhibiting lipid metabolism via miR-215-5p/SREBP1 [J]. Endocrinology, 2022, 163(5): bqac040.
[50]
Kong X, Duan Y, Sang Y, et al. LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215 [J]. J Cell Physiol, 2019, 234(6): 9105-9117.
[51]
Wu XP, Xu ZQ, Xie WM, et al. Long non-coding RNA GAS6-AS1 enhances breast cancer cell aggressiveness by functioning as a competing endogenous RNA of microRNA-215-5p to enhance SOX9 expression [J]. Exp Ther Med, 2022, 23(1): 109.
[52]
Tripathi SK, Mathaiyan J, Kayal S, et al. Identification of differentially expressed mirna by next generation sequencing in locally advanced breast cancer patients of south Indian origin [J]. Asian Pac J Cancer Prev, 2022, 23(7): 2255-2261.
[53]
Tavakolian S, Goudarzi H, Torfi F, et al. Evaluation of microRNA-9 and -192 expression levels as biomarkers in patients suffering from breast cancer [J]. Biomed Rep, 2020, 12(1): 30-34.
[54]
Wu Q, Lu Z, Li H, et al. Next-generation sequencing of microRNAs for breast cancer detection [J]. J Biomed Biotechnol, 2011, 2011: 597 145.
[55]
Fang R, Zhu Y, Hu L, et al. Plasma microRNA pair panels as novel biomarkers for detection of early stage breast cancer [J]. Front Physiol, 2018, 9: 1879.
[56]
Canatan D, Sönmez Y, Yilmaz Ö,et al. MicroRNAs as biomarkers for breast cancer [J]. Acta Biomed, 2021, 92(2): e2021028.
[57]
Zhou SW, Su BB, Zhou Y, et al. Aberrant miR-215 expression is associated with clinical outcome in breast cancer patients [J]. Med Oncol, 2014, 31(11): 259.
[58]
Li M, Zou X, Xia T, et al. A five-miRNA panel in plasma was identified for breast cancer diagnosis [J]. Cancer Med, 2019, 8(16): 7006-7017.
[59]
Erceylan ÖF, Savaş A, Göv E. Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer [J]. Turk J Biol, 2021, 45(2): 127-137.
[60]
Madhavan D, Peng C, Wallwiener M, et al. Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis [J]. Carcinogenesis, 2016, 37(5): 461-470.
[61]
van Schooneveld E, Wouters MC, Van der Auwera I, et al. Expression profiling of cancerous and normal breast tissues identifies microRNAs that are differentially expressed in serum from patients with (metastatic) breast cancer and healthy volunteers [J]. Breast Cancer Res, 2012, 14(1): R34.
[62]
Pizzamiglio S, Cosentino G, Ciniselli CM, et al. What if the future of HER2-positive breast cancer patients was written in miRNAs? An exploratory analysis from NeoALTTO study [J]. Cancer Med, 2022, 11(2): 332-339.
[63]
Hironaka-Mitsuhashi A, Matsuzaki J, Takahashi RU, et al. A tissue microRNA signature that predicts the prognosis of breast cancer in young women [J]. PLoS One, 2017, 12(11): e0187638.
[64]
He Y, Deng F, Zhao S, et al. Analysis of miRNA-mRNA network reveals miR-140-5p as a suppressor of breast cancer glycolysis via targeting GLUT1 [J]. Epigenomics, 2019, 11(9): 1021-1036.
[65]
Figueira I, Godinho-Pereira J, Galego S, et al. MicroRNAs and extracellular vesicles as distinctive biomarkers of precocious and advanced stages of breast cancer brain metastases development [J]. Int J Mol Sci, 2021, 22(10): 5214.
[66]
Di Cosimo S, Ciniselli CM, Pizzamiglio S, et al. End-of-neoadjuvant treatment circulating microRNAs and HER2-positive breast cancer patient prognosis: an exploratory analysis from NeoALTTO [J]. Front Oncol, 2022, 12: 1 028 825.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 林丽, 杨英, 张毅. 精准医学时代乳腺癌腋窝淋巴结的管理[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 193-198.
[3] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[4] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[5] 余晓青, 高欣, 罗文培, 杨露. BI-RADS 4类结节患者的乳腺癌风险预测模型[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 217-223.
[6] 杨焕, 马靓, 沈俊, 董丽丽, 孙文雯. 乳腺癌新辅助化疗患者支持性照顾需求与症状群及应对方式的相关性[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 224-230.
[7] 姚宁宁, 蒋丽, 张小霞, 陆玉成. 组蛋白乳酸化修饰及其在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 231-234.
[8] 刘明禹, 马兵. 吸入性损伤早期诊断方法及策略的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 356-359.
[9] 伍先权, 张立果, 周璇, 梁建深. 乳腺包裹性乳头状癌的临床病理与手术策略联系[J]. 中华普通外科学文献(电子版), 2024, 18(04): 294-297.
[10] 李雪, 韩萌萌, 冯雪园, 马宁. 人表皮生长因子受体2低表达乳腺癌的研究进展及挑战[J]. 中华普通外科学文献(电子版), 2024, 18(04): 308-312.
[11] 刘虹, 王品, 王彬, 任杰超, 张文杰, 吴剑, 刘莹. 经腋窝腔镜辅助保留乳头乳晕皮下腺体切除术+Ⅰ期胸肌前假体乳房重建术[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 419-422.
[12] 康乐平, 张琳, 万舟, 苟勇. 腔镜皮下腺体切除及腋窝淋巴结清扫加假体植入术治疗乳腺癌疗效及并发症分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 427-429.
[13] 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 407-449.
[14] 王天福, 王刚. 自身免疫性胰腺炎诊治现状[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 492-497.
[15] 张红君, 郑博文, 廖梅, 任杰. 超声及超声造影在肝移植术后上腹部淋巴结良恶性鉴别诊断中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 562-567.
阅读次数
全文


摘要