切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 339 -345. doi: 10.3877/cma.j.issn.1674-0807.2024.06.003

论著

增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用
刘晨鹭1, 刘洁1, 张帆1, 严彩英1, 陈倩1, 陈双庆1,()   
  1. 1.215001 南京医科大学附属苏州医院放射科
  • 收稿日期:2024-04-20 出版日期:2024-12-01
  • 通信作者: 陈双庆
  • 基金资助:
    国家自然科学基金面上资助项目(62371449)苏州市医学会影像医星资助项目(2022YX-Q08)

Habitat analysis based on enhanced MRI radiomic features in predicting HER-2 expression in breast cancer

Chenlu Liu1, Jie Liu1, Fan Zhang1, Caiying Yan1, Qian Chen1, Shuangqing Chen1,()   

  1. 1.Department of Radiology,Suzhou Hospital,Nanjing Medical University, Suzhou 215001, China
  • Received:2024-04-20 Published:2024-12-01
  • Corresponding author: Shuangqing Chen
引用本文:

刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.

Chenlu Liu, Jie Liu, Fan Zhang, Caiying Yan, Qian Chen, Shuangqing Chen. Habitat analysis based on enhanced MRI radiomic features in predicting HER-2 expression in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(06): 339-345.

目的

基于增强MRI 影像组学特征的生境分析,建立乳腺癌HER-2 表达状态预测模型。

方法

回顾性分析2018 年1 月至2023 年5 月在南京医科大学附属苏州医院接受增强MRI 检查的168 例乳腺癌患者增强T1 压脂序列第2 期图像数据,其中HER-2 阴性100 例,HER-2 阳性68 例。 对图像进行预处理后,手动分割得到全肿瘤感兴趣体积(VOI)。 提取24 项局部影像组学特征,并使用高斯混合模型(GMM)结合贝叶斯信息准则(BIC)进行聚类,获得生境亚区域。 分别提取亚区域及全肿瘤区域影像组学特征,并按照7 ∶3 比例随机划分训练集(117 例)和验证集(51 例)。 采用逻辑回归(LR)、支持向量机(SVM)和K-近邻(KNN)3 种算法,分别构建生境预测模型及全肿瘤预测模型。 通过验证集曲线下面积(AUC)结果选择最佳模型,并汇总其受试者操作特征(ROC)曲线,利用DeLong 检验比较2 种预测模型AUC 值的差异,同时使用决策曲线分析(DCA)评估模型的临床应用价值。

结果

每个全肿瘤VOI被划分为3 个生境亚区域。 SVM 为最佳建模方法,生境预测模型-SVM 在训练集的AUC 值为0.949(95%CI: 0.915~0.984),验证集的AUC 值为0.844(95%CI: 0.725 ~0.963)。 最佳的全肿瘤预测模型-SVM 在训练集的AUC 值为0.870(95%CI: 0.809 ~0.931),验证集的AUC 值为0.735(95%CI: 0.588 ~0.882)。 生境预测模型-SVM 在训练集和验证集的准确度、敏感度及特异度均优于全肿瘤预测模型-SVM,且DeLong 检验结果显示两者在训练集的AUC 值差异具有统计学意义(Z=2.134,P=0.033)。DCA 分析结果表明,生境预测模型-SVM 在预测HER-2 表达状态时具有更高的整体净获益。

结论

本研究基于增强MRI 影像组学的生境分析,建立了乳腺癌HER-2 表达状态预测模型,可为乳腺癌患者的精准治疗提供依据。

Objective

To establish a prediction model for HER-2 expression status in breast cancer using habitat analysis based on enhanced MRI radiomic features.

Methods

A retrospective analysis was conducted on the second-phase DCE-T1 WI data of 168 breast cancer patients who underwent enhanced MRI examinations in the Affiliated Suzhou Hospital of Nanjing Medical University from January 2018 to May 2023.Among them, 100 cases were HER-2-negative, and 68 cases were HER-2-positive. After preprocessing the images, the whole tumor volume of interest (VOI) was manually segmented. Twenty-four regional radiomic features were extracted and clustered into habitat subregions using a Gaussian Mixture Model (GMM) combined with the Bayesian Information Criterion (BIC). Radiomic features were separately extracted from the subregions and the entire tumor region. The data were randomly divided into a training set (117 cases) and a validation set(51 cases) at the ratio of 7 ∶3. Logistic regression (LR), support vector machine (SVM), and k-nearest neighbor (KNN) algorithms were used to construct habitat prediction models and whole-tumor prediction models. The optimal model was selected based on the area under the curve (AUC) value in the validation set,the receiver operating characteristic (ROC) curve was drawn. DeLong’s test was used to compare the AUC of the two prediction models, and decision curve analysis (DCA) was performed to evaluate the clinical utility of the models.

Results

Each tumor VOI was segmented into three habitat subregions. SVM was identified as the best modeling method. The habitat prediction model-SVM achieved an AUC of 0.949 (95%CI:0.915-0.984) in the training set and 0.844 (95%CI: 0.725-0.963) in the validation set. The best whole-tumor prediction model-SVM achieved an AUC of 0.870 (95%CI: 0.809-0.931) in the training set and 0.735 (95%CI: 0.588-0.882) in the validation set. The habitat prediction model-SVM demonstrated superior accuracy, sensitivity and specificity compared with the whole-tumor prediction model-SVM in both the training and validation sets.DeLong’s test indicated that the AUC differences between the models in the training set were statistically significant (Z=2.134, P=0.033). DCA results showed that the habitat prediction model-SVM provided the highest net benefit.

Conclusions

This study established a prediction model for HER-2 expression status in breast cancer based on habitat analysis using enhanced MRI radiomic features, which may provide a reference for precision treatment of breast cancer patients.

表1 训练集与验证集乳腺癌患者的基线资料比较
图1 聚类数目-贝叶斯信息准则折线图
图2 乳腺增强MRI 原始图像及对应的生境亚区域图像 a、b 图分别为原始图像和生境亚区域图像
图3 最小绝对收缩和选择算法筛选出的生境亚区域组学特征结果
图4 生境预测模型-SVM 和全肿瘤预测模型-SVM 的ROC 曲线 a、b 图分别为训练集及验证集的ROC 曲线
表2 生境预测模型及全肿瘤区域预测模型的性能结果
图5 生境预测模型-SVM 和全肿瘤预测模型-SVM 的决策曲线分析结果
[1]
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2024,74(3):229-263.
[2]
Early Breast Cancer Trialists′ Collaborative group ( EBCTCG ).Trastuzumab for early-stage,HER-2-positive breast cancer: a metaanalysis of 13 864 women in seven randomised trials[J]. Lancet Oncol,2021,22(8):1139-1150.
[3]
中国医药教育协会乳腺癌个案管理师分会.乳腺癌靶向药物静脉输注规范专家共识(2022 版)[J].中华医学杂志,2022,102(28):2153-2160.
[4]
中国临床肿瘤学会乳腺癌专家委员会,中国抗癌协会乳腺癌专业委员会.人表皮生长因子受体2 阳性乳腺癌临床诊疗专家共识(2021 版)[J].中华医学杂志,2021,101(17):1226-1231.
[5]
杨壹羚,宋园明,薛慧琴,等.人表皮生长因子受体2 瘤内异质性乳腺癌的病理学特征和免疫微环境[J].中华肿瘤杂志,2023,45(2):165-169.
[6]
Napel S,Mu W,Jardim-Perassi BV,et al. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics,deep learning,and habitats[J].Cancer ,2018,124:4633-4649.
[7]
Shi ZW,Huang XM, Cheng ZL, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer [J]. Radiology, 2023,308(1): e222830.
[8]
Chatterji M,Mercado CL, Moy L. ptimizing 1. 5-tesla and 3-tesla dynamic contrast-enhanced magnetic resonance imaging of the breasts[J].Magn Reson Imaging Clin N Am,2010,18(2):207-224.
[9]
Rajan K, Aniruddha D, Chao S, et al. A Gaussian mixture-model exploiting pathway knowledge for dissecting cancer heterogeneity[J].IEEE/ACM Trans Comput Biol Bioinform, 2020,17(2):459-468.
[10]
李卓君,杨晓芳,姜增誉,等.基于DBT 的瘤内和瘤周影像组学评估乳腺癌HER-2 状态的研究[J].临床放射学杂志,2023,42(9):1436-1441.
[11]
帅鸽,郁义星,董佳,等.乳腺X 线影像组学标签在预测乳腺癌HER-2 表达中的价值[J]. 放射学实践,2022,37(1):41-47.
[12]
谢玉海,韩剑剑,马培旗,等.基于多中心数字化乳腺X 线摄影影像组学预测乳腺癌人表皮生长因子受体-2 过表达[J]. 中国医学影像技术,2023,39(3):365-369.
[13]
Gillies RJ,Balagurunathan Y.Perfusion MR imaging of breast cancer:insights using "habitat imaging"[J]. Radiology. 2018,288(1):36-37.
[14]
Tomaszewski MR,Gillies RJ.The biological meaning of radiomic features[J].Radiology,2021,298(3):202553.
[15]
Kim M, Park JE, Kim HS, et al. Spatiotemporal habitats from multiparametric physiologic MRI distinguish tumor progression from treatment-related change in post-treatment glioblastoma [ J]. Eur Radiol,2021,31(8):6374-6383.
[16]
Yang Y,Han Y,Zhao S,et al.Spatial heterogeneity of edema region uncovers survival-relevant habitat of Glioblastoma[J]. Eur J Radiol,2022,154:110423.
[17]
Alberto T,Leonard W,Andre D,et al.Repeatability and reproducibility of radiomic features: a systematic review[J]. Int J Radiat Oncol Biol Phys,2018,102(4):1143-1158.
[18]
Xie C,Yang P,Zhang X,et al.Sub-region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemoradiotherapy[J].EbioMedicine,2019,44:289-297.
[19]
Shi J,Cui L,Wang H,et al. MRI-based intratumoral and peritumoral radiomics on prediction of lymph-vascular space invasion in cervical cancer:a multi-center study[J]. Diagn Interv Radiol,2022,72:103373.
[20]
Abdelhafez AH,Musall BC, Adrada BE, et al. Tumor necrosis by pretreatment breast MRI:association with neoadjuvant systemic therapy(NAST) response in triple-negative breast cancer (TNBC)[J]. Breast Cancer Res Treat, 2021,185(1):1-12.
[21]
陈贤飞,李蕊蕊,刘旭东,等.探讨DCE-MR 影像组学预测模型鉴别HER-2 低表达与HER-2 阳性乳腺癌的应用价值[J].中国CT 和MRI 杂志,2023,21(10):87-90.
[22]
朱娅娣,郁义星,杨玲.动态增强MRI 影像组学模型术前预测乳腺癌前哨淋巴结转移[J].国际医学放射学杂志,2021,44(6):632-637.
[23]
李薇,平学军,刘宇豪,等.MRI 影像组学特征预测乳腺癌分子分型的价值[J].临床放射学杂志,2021,40(9):1709-1714.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[10] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[11] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[12] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[13] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[14] 刘先勇, 秦东梅, 张若梅, 李俊娇, 孟春芹, 邬明歆, 王玉红, 赵新鲜, 徐瑞联, 洪文文, 马玲, 仇玮, 周宇. Her2/Hes1在肠型胃癌Correa级联反应3个病理阶段中的表达及意义[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 321-327.
[15] 张立俊, 孙存杰, 胡春峰, 孟冲, 张辉. MSCT、DCE-MRI 评估术前胃癌TNM 分期的准确性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 519-523.
阅读次数
全文


摘要