切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 339 -347. doi: 10.3877/cma.j.issn.1674-0807.2025.06.003

所属专题: 文献

论著

基于单细胞RNA测序的乳腺癌肿瘤相关巨噬细胞亚群鉴定与临床预后分析
金烨莹1,,2, 王艺璇1,,2, 杨瑞1,()   
  1. 1 030013 太原,山西省肿瘤医院/中国医学科学院肿瘤医院山西医院/山西医科大学附属肿瘤医院乳腺外科
    2 030600 晋中,山西医科大学基础医学院医学人工智能教研室
  • 收稿日期:2025-03-03 出版日期:2025-12-01
  • 通信作者: 杨瑞
  • 基金资助:
    国家自然科学基金青年科学基金项目(82205132); 山西省基础研究计划青年科学研究项目(202203021212065); 山西省肿瘤医院博士科研基金(Dr202312)

Identification of tumor-associated macrophage subpopulations in breast cancer based on single-cell RNA sequencing and clinical prognosis

Yeying Jin1,,2, Yixuan Wang1,,2, Rui Yang1,()   

  1. 1 Department of Breast Surgery, Shanxi Cancer Hospital / Shanxi Branch of Cancer Hospital, Chinese Academy of Medical Sciences, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030013, China
    2 Department of Medical Artificial Intelligence, School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030600, China
  • Received:2025-03-03 Published:2025-12-01
  • Corresponding author: Rui Yang
引用本文:

金烨莹, 王艺璇, 杨瑞. 基于单细胞RNA测序的乳腺癌肿瘤相关巨噬细胞亚群鉴定与临床预后分析[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 339-347.

Yeying Jin, Yixuan Wang, Rui Yang. Identification of tumor-associated macrophage subpopulations in breast cancer based on single-cell RNA sequencing and clinical prognosis[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2025, 19(06): 339-347.

目的

探讨乳腺癌中肿瘤相关巨噬细胞(TAM)的异质性及不同TAM亚群的功能差异,分析TAM相关基因对三阴性乳腺癌(TNBC)患者预后的影响。

方法

收集GSE161529数据集中30例乳腺癌患者与13例正常人乳腺组织样本,采用Seurat流程和共识非负矩阵分解算法鉴定TAM亚群,通过GO和免疫反应富集分析不同TAM亚群的免疫功能。收集GSE148673数据集中5例TNBC乳腺组织样本,采用单因素Cox回归分析与Pearson相关性筛选显著关联基因对,构建TAM预后基因的共表达网络。采用K-means无监督聚类方法,根据共表达网络中的基因对TCGA与GEO数据库中的247例TNBC患者进行分子分型,比较不同亚型患者间的生存差异与临床特征。采用Kaplan-Meier法和Log-rank检验进行生存分析。

结果

GSE161529数据集中注释了8种细胞(上皮细胞、T细胞、成纤维细胞、巨噬细胞、内皮细胞、组织干细胞、B细胞和共同髓系祖细胞),共鉴定出6个功能不同的TAM亚群,分别在免疫炎症、能量代谢以及细胞黏附等方面发挥作用。GSE148673数据集中,TAM相关基因CLEC4E、CTSC、CTSH和CTSS的高表达与TNBC良好预后相关(P<0.01),而STAB1、RNASE1、SDS、SPP1、TREM2的高表达则提示不良预后(P<0.01)。通过单因素Cox回归分析和Pearson相关性分析,构建了26个与患者预后相关的TAM基因共表达网络。根据26个TAM基因的表达将TNBC患者分为保护型(A组,96例)和风险型(B组,99例)。二分类聚类热图显示组内具有高度一致;基因表达热图显示保护型TAM基因在A组高表达、在B组低表达。生存分析显示A组患者总生存率显著优于B组(χ2=6.63,P=0.010);临床热图进一步显示两组患者在年龄、临床分期上存在差异。

结论

乳腺癌及其肿瘤微环境中的TAM存在异质性,6个TAM亚群在免疫炎症、能量代谢以及细胞黏附等方面具有不同作用。TAM相关基因在TNBC患者中具有临床分型和预后预测价值。

Objective

To explore the heterogeneity of tumor-associated macrophage (TAM) in breast cancer and the functional differences among different TAM subgroups, and analyze the impact of TAM-related genes on the prognosis of triple negative breast cancer (TNBC) patients.

Methods

Thirty breast cancer tissue samples and 13 normal breast tissue samples from the GSE161529 dataset were collected. TAM subgroups were identified using the Seurat pipeline and consensus non-negative matrix factorization algorithm. The immune functions of different TAM subgroups were analyzed through GO and immune response enrichment analysis. The tissue samples of 5 TNBC patients from the GSE148673 dataset were collected. Univariate Cox regression and Pearson correlation analysis were used to screen for significant gene pairs related to TAM, and a co-expression network of TAM prognostic genes was constructed. K-means unsupervised clustering was used to get molecular subtypes of 247 TNBC patients in the TCGA and GEO databases based on the co-expression network genes, and survival differences and clinical characteristics were compared among different subtypes. Survival analysis was performed using the Kaplan-Meier method and log-rank test.

Results

Eight cell types (epithelial cells, T cells, fibroblasts, macrophages, endothelial cells, tissue stem cells, B cells and common myeloid progenitor cells) were annotated in the GSE161529 dataset. Among them, six functionally distinct TAM subgroups were identified, which played roles in immune inflammation, energy metabolism and cell adhesion. In the GSE148673 dataset, high expression of TAM-related genes CLEC4E, CTSC, CTSH, and CTSS was associated with a favorable prognosis in TNBC patients (P<0.01), while high expression of STAB1, RNASE1, SDS, SPP1 and TREM2 indicated a poor prognosis (P<0.01). Through univariate Cox analysis and Pearson correlation analysis, a co-expression network of 26 TAM genes related to patient prognosis was constructed. TNBC patients were classified into protective type (Group A, 96 cases) and risky type (Group B, 99 cases) based on the expression of 26 TAM genes. The binary clustering heatmap showed high consistency within groups; the gene expression heatmap indicated that protective TAM genes were highly expressed in Group A and lowly expressed in Group B. Survival analysis showed that the overall survival of Group A patients was significantly better than that of Group B (χ2=6.63,P=0.010); the clinical heatmap further revealed differences in age and clinical stage between two groups.

Conclusion

TAMs in breast cancer and its tumor microenvironment are heterogeneous, and six TAM subgroups have distinct roles in immune inflammation, energy metabolism and cell adhesion. TAM-related genes have clinical typing and prognostic prediction value in TNBC patients.

图1 GSE161529的单细胞质控与细胞注释 a图为GSE161529数据集中注释的8种细胞类型;b图为不同样本中细胞比例的柱状图;c图为乳腺癌组和对照组的细胞类型比例 注:umap_1和umap_2代表单细胞数据中方差最大、分离最显著的两个正交方向,其数值代表细胞在坐标轴上的相对位置
图2 GSE161529的差异基因表达分析 a图为细胞差异基因火山图;b图为 scDEG在免疫细胞间的表达热图;c图为 scDEG的GO和KEGG富集分析结果 注:scDEG为单细胞类群差异基因;GO为基因本体;KEGG为京都基因和基因组百科全书;FC为差异倍数;Padj为校正后P值;BP为生物学过程;CC为细胞成分;MF为分子功能
图3 基于cNMF算法降维的TAM算法聚类分析及标志基因鉴定 a图为TAM最佳亚群数量折线图;b图为TAM亚群聚类t-SNE图;c图为6个TAM亚群差异基因表达热图 注:cNMF为共识非负矩阵分解;TAM为肿瘤相关巨噬细胞;t-SNE为t-分布随机邻域嵌入
图4 TAM亚群GO富集分析及IREA分析 a图为TAM亚群相关差异基因GO富集分析;b图为TAM亚群的IREA分析结果 注:GO为基因本体论;cNMF为共识非负矩阵分解;IREA为免疫反应富集分析;TAM为肿瘤相关巨噬细胞;IL为白细胞介素;GM-CSF为粒细胞-巨噬细胞集落刺激因子;M-CSF为巨噬细胞集落刺激因子;IFN为干扰素;TNF为肿瘤坏死因子;LIF为白血病抑制因子;PRL为催乳素
图5 TNBC患者的TAM基因相关性分析、生存分析以及共识聚类结果 a图为预后相关的TAM基因共表达网络;b图为聚类结果的稳定性评估;c图为共识聚类矩阵;d图为生存分析;e图为临床热图 注:TNBC为三阴性乳腺癌;TAM为肿瘤相关巨噬细胞;CDF为累积分布函数;A组为保护型聚类亚型;B组为风险型聚类亚型
[1]
Giaquinto ANSung HNewman LA,et al. Breast cancer statistics 2024[J]. CA Cancer J Clin202474(6): 477-495.
[2]
Batool ZKamal MAShen B. Advancements in triple-negative breast cancer sub-typing,diagnosis and treatment with assistance of artificial intelligence: a focused review[J]. J Cancer Res Clin Oncol2024150(8): 383.
[3]
Hanahan DWeinberg RA. Hallmarks of cancer: the next generation[J]. Cell2011144(5): 646-674.
[4]
Kelly PMDavison RSBliss E,et al. Macrophages in human breast disease: a quantitative immunohistochemical study[J]. Br J Cancer198857(2): 174-177.
[5]
Wu TLiao Y. Roles of tumor-associated macrophages in triple-negative breast cancer progression[J]. Front Immunol202516: 1677363.
[6]
Matsumoto HKoo SLDent R,et al. Role of inflammatory infiltrates in triple negative breast cancer[J]. J Clin Pathol201568(7): 506-510.
[7]
Pan YYu YWang X,et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol202011: 583084.
[8]
Viola AMunari FSánchez-Rodríguez R,et al. The metabolic signature of macrophage responses[J]. Front Immunol201910: 1462.
[9]
Stavrou MConstantinidou A. Tumor associated macrophages in breast cancer progression: implications and clinical relevance[J]. Front Immunol202415: 1441820.
[10]
Mantovani ASica ASozzani S,et al. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol200425(12): 677-686.
[11]
Giladi AAmit I. Single-cell genomics: a stepping stone for future immunology discoveries[J]. Cell2018172(1/2): 14-21.
[12]
Davis SMeltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor[J]. Bioinformatics200723(14):1846-1847.
[13]
Barrett TWilhite SELedoux P,et al. NCBI GEO: archive for functional genomics data sets--update[J]. Nucleic Acids Res201341(Database issue): D991-D995.
[14]
Chen YPal BLindeman GJ,et al. R code and downstream analysis objects for the scRNA-seq atlas of normal and tumorigenic human breast tissue[J]. Sci Data20229(1): 96.
[15]
Hao YHao SAndersen-Nissen E,et al. Integrated analysis of multimodal single-cell data[J]. Cell2021184(13): 3573-3587. e29.
[16]
Yu GWang LGHan Y,et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS201216(5): 284-287.
[17]
Wagner JRapsomaniki MAChevrier S,et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer[J]. Cell2019177(5): 1330-1345. e18.
[18]
Li CYu XHan X,et al. Innate immune cells in tumor microenvironment: a new frontier in cancer immunotherapy[J]. iScience202427(9): 110750.
[19]
Zhang DWang MLiu G,et al. Novel FABP4+C1q+ macrophages enhance antitumor immunity and associated with response to neoadjuvant pembrolizumab and chemotherapy in NSCLC via AMPK/JAK/STAT axis[J]. Cell Death Dis202415(10): 717.
[20]
Khoshbakht SAzimzadeh Jamalkandi SMasudi-Nejad A. Involvement of immune system and epithelial-mesenchymal-transition in increased invasiveness of clustered circulatory tumor cells in breast cancer[J]. BMC Med Genomics202114(1): 273.
[21]
Kelly BO'Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity[J]. Cell Res201525(7): 771-784.
[22]
Fujisaka SUsui INawaz A,et al. M2 macrophages in metabolism[J]. Diabetol Int20167(4): 342-351.
[23]
Liu YCao X. The origin and function of tumor-associated macrophages[J]. Cell Mol Immunol201512(1): 1-4.
[24]
Li WXu GChai GW,et al. The MiR-139-5p and CXCR4 axis may play a role in high glucose-induced inflammation by regulating monocyte migration[J]. Sci Rep202515(1): 6738.
[25]
Marzio RMauël JBetz-Corradin S. CD69 and regulation of the immune function[J]. Immunopharmacol Immunotoxicol199921(3): 565-582.
[26]
Novinec MLenarčič B. Cathepsin K: a unique collagenolytic cysteine peptidase[J]. Biol Chem2013394(9): 1163-1179.
[27]
Shen JShi MSong A,et al. Association of ACP5 with the tumor immune microenvironment and its role in cell proliferation and metastasis in pancreatic cancer[J]. Am J Transl Res202315(11): 6437-6450.
[28]
Cheng SLi ZGao R,et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells[J]. Cell2021184(3): 792-809. e23.
[29]
Wilkinson RDABurden REMcDowell SH,et al. A novel role for cathepsin S as a potential biomarker in triple negative breast cancer[J]. J Oncol20192019: 3980273.
[30]
Chen YCChen CCChen RF,et al. SPP1 mRNA expression is associated with M2 macrophage infiltration and poor prognosis in triple-negative breast cancer[J]. Curr Issues Mol Biol202446(12): 13499-13513.
[1] 深圳市医学会乳腺病学分会, 深圳市医学会肿瘤学分会, 深圳市医师协会乳腺专科医师分会, 深圳市健康管理协会乳房健康与康复管理专业委员会, 深圳市抗癌协会乳腺癌专业委员会, 深圳市抗癌协会肿瘤放射治疗专业委员会, 深圳市中西医结合学会甲状腺乳腺病专业委员会. 乳腺癌新辅助治疗的疗效预测和疗效评价专家共识(2025版)[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 321-330.
[2] 李雨秋, 莫红楠. 乳腺癌肿瘤微环境特征及免疫治疗新进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 331-338.
[3] 王天艺, 李筝, 许锐. 激素受体阳性/HER-2阴性早期乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 352-357.
[4] 刘锦婷, 梁高强, 李文涛. 乳房切除术后感觉功能重建的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 358-361.
[5] 邓宝, 郭子琳, 仲雷. 乳腺癌治疗中的铁死亡机制与铁基纳米材料应用进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 362-368.
[6] 樊晓宇, 刘风侠, 马力. 年轻乳腺癌患者养育忧虑的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 369-372.
[7] 谭路露, 李梦冉, 张晓莹, 唐立华, 谭宇彦. 原发性乳腺癌术后小肠转移一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 373-376.
[8] 杨晶, 高洁, 李淑琴, 夏铀铀. 同时性双侧乳腺癌一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 377-380.
[9] 赵诗迪, 杨姣, 周妍, 范园, 杨谨. CDK4/6抑制剂在激素受体阳性晚期乳腺癌一线治疗中的挑战及进展后策略[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(05): 257-266.
[10] 蒋树云, 马志军, 张旭, 陈棋帅, 耿智华贞. R-spondin 2在乳腺癌中的表达及其对SKBR-3细胞生长转移能力的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(05): 267-274.
[11] 孙圣梅, 习一清, 安宁. 人表皮生长因子受体2阳性型乳腺癌新辅助治疗响应的基因预测模型[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 332-339.
[12] 阮希伦, 单臻, 范远键, 林颖, 王深明, 龙健婷, 徐向东. 一项妊娠相关性乳腺癌病理学特征、治疗方案及预后信息的回顾性研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 340-344.
[13] 孟庆杰, 印玉龙, 韩晓刚, 张浩萌, 江思源, 刘向华, 吕勇刚, 刘曌宇. 保留皮肤乳房切除+乳腺重建术治疗早期乳腺癌的近期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 646-649.
[14] 王达, 朱建敏. 血小板/淋巴细胞计数比值对乳腺癌新辅助化疗疗效的预测效能[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 650-653.
[15] 马超, 王传嘉, 张武坊. 经腋窝入路单孔腔镜保乳术与传统开放手术治疗早期乳腺癌的对比研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 674-677.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?