切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 362 -368. doi: 10.3877/cma.j.issn.1674-0807.2025.06.007

所属专题: 文献

综述

乳腺癌治疗中的铁死亡机制与铁基纳米材料应用进展
邓宝1, 郭子琳2, 仲雷1,()   
  1. 1 150023  哈尔滨,哈尔滨医科大学附属第六医院乳腺外科
    2 300270 天津,天津医科大学临床医学院
  • 收稿日期:2025-07-08 出版日期:2025-12-01
  • 通信作者: 仲雷
  • 基金资助:
    黑龙江省自然科学基金面上项目(PL2024H153)

Advances in ferroptosis mechanisms and iron-based nanomaterial applications in breast cancer therapy

Bao Deng, Zilin Guo, Lei Zhong()   

  • Received:2025-07-08 Published:2025-12-01
  • Corresponding author: Lei Zhong
引用本文:

邓宝, 郭子琳, 仲雷. 乳腺癌治疗中的铁死亡机制与铁基纳米材料应用进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 362-368.

Bao Deng, Zilin Guo, Lei Zhong. Advances in ferroptosis mechanisms and iron-based nanomaterial applications in breast cancer therapy[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2025, 19(06): 362-368.

肿瘤耐药性、转移复发等难题对乳腺癌治疗造成了严重的挑战。近年来,铁基纳米材料凭借其独特的理化性质,既可作为新型药物递送系统,在靶点实现药物的精准传递和释放,又能在肿瘤细胞内释放铁离子,通过引发细胞内铁过载、干扰谷胱甘肽代谢及诱导活性氧爆发等机制,触发肿瘤细胞内铁死亡级联反应,为突破乳腺癌传统治疗瓶颈提供了新的策略。本文不仅深入阐述乳腺癌中的铁死亡调控机制,还探讨了铁基纳米材料利用其机制治疗乳腺癌的研究进展。此外,其与光疗、化疗、磁热治疗、声动力治疗等多种疗法相结合的协同治疗方案,为提升乳腺癌的疗效开辟了新的思路。

图1 触发铁死亡的铁基纳米材料
[1]
Coles CEAnderson BOCameron D,et al. The Lancet Breast Cancer Commission: tackling a global health,gender,and equity challenge[J]. Lancet2022399(10330): 1101-1103.
[2]
Bray FLaversanne MSung H,et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin202474(3): 229-263.
[3]
Metcalfe KAFinch APoll A,et al. Breast cancer risks in women with a family history of breast or ovarian cancer who have tested negative for a BRCA1 or BRCA2 mutation[J]. B J Cancer2009100(2): 421-425.
[4]
Liu NYang DWWu YX,et al. Burden,trends,and risk factors for breast cancer in China from 1990 to 2019 and its predictions until 2034: an up-to-date overview and comparison with those in Japan and South Korea[J]. BMC Cancer202222(1): 826.
[5]
Giordano SBGradishar W. Breast cancer: updates and advances in 2016[J]. Curr Opin Obstet Gynecol201729(1): 12-17.
[6]
Dixon SJLemberg KMLamprecht MR,et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell2012149(5): 1060-1072.
[7]
Majno GJoris I. Apoptosis,oncosis,and necrosis. An overview of cell death[J]. Am J Pathol1995146(1): 3-15.
[8]
Stockwell BRJiang XGu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol202030(6): 478-490.
[9]
Dixon SJPatel DNWelsch M,et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J]. Elife20143: e02523.
[10]
Li CZhang YLiu J,et al. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death[J]. Autophagy202117(4): 948-960.
[11]
Sun SShen JJiang J,et al. Targeting ferroptosis opens new avenues for the development of novel therapeutics[J]. Signal Transduct Target Ther20238(1): 372.
[12]
Louandre CEzzoukhry ZGodin C,et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib[J]. Int J Cancer2013133(7): 1732-1742.
[13]
Guan CHan YLing Z,et al. Nanomaterials: breaking the bottleneck of breast cancer drug resistance[J]. Front Immunol202415: 1492546.
[14]
He PLei QYang B,et al. Dual-stage irradiation of size-switchable albumin nanocluster for cascaded tumor enhanced penetration and photothermal therapy[J]. ACS Nano202216(9): 13919-13932.
[15]
Deng WShang HTong Y,et al. The application of nanoparticles-based ferroptosis,pyroptosis and autophagy in cancer immunotherapy[J]. J Nanobiotechnology202422(1): 97.
[16]
Shen YLi XDong D,et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy[J]. Am J Cancer Res20188(6): 916-931.
[17]
Zhang YZou LLi X,et al. SLC40A1 in iron metabolism,ferroptosis,and disease: a review[J]. WIREs Mech Dis202416(4): e1644.
[18]
Jiang LWang JWang K,et al. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation[J]. Blood2021138(8): 689-705.
[19]
Mansuer MZhou LWang C,et al. Erianin induces ferroptosis in GSCs via REST/LRSAM1 mediated SLC40A1 ubiquitination to overcome TMZ resistance[J]. Cell Death Dis202415(7): 522.
[20]
He XYFan XQu L,et al. LncRNA modulates Hippo-YAP signaling to reprogram iron metabolism[J]. Nat Commun202314(1): 2253.
[21]
Luo CLiang HJi M,et al. Autophagy induced by mechanical stress sensitizes cells to ferroptosis by NCOA4-FTH1 axis[J]. Autophagy202521(6): 1263-1282.
[22]
Wang MZhang WLiu B,et al. Boosting cancer cell ferroptosis with carbon monoxide poisoned hemoglobin[J]. J Am Chem Soc2025147(20): 17372-17383.
[23]
Lu YSGu FFMa YW,et al. Tumor cell membrane-camouflaged vortex magnetic nanoannulars programmed by low-frequency magnetic field: a novel anti-cancer delivery system in triple-negative breast cancer[J]. Adv Funct Mater202434(42):2401940.
[24]
Zuo TFang TZhang J,et al. pH-sensitive molecular-switch-containing polymer nanoparticle for breast cancer therapy with ferritinophagy-cascade ferroptosis and tumor immune activation[J]. Adv Healthc Mater202110(21): e2100683.
[25]
Liu YSun QGuo J,et al. Dual ferroptosis induction in N2-TANs and TNBC cells via FTH1 targeting: a therapeutic strategy for triple-negative breast cancer[J]. Cell Rep Med20256(1): 101915.
[26]
Dixon SJStockwell BR. The role of iron and reactive oxygen species in cell death[J]. Nat Chem Biol201410(1): 9-17.
[27]
Jiang XStockwell BRConrad M. Ferroptosis: mechanisms,biology and role in disease[J]. Nat Rev Mol Cell Biol202122(4): 266-282.
[28]
Jia BLi JSong Y,et al. ACSL4-mediated ferroptosis and its potential role in central nervous system diseases and injuries[J]. Int J Mol Sci202324(12):10021.
[29]
Zhao YLinkermann ATakahashi M,et al. Ferroptosis in cardiovascular disease: regulatory mechanisms and therapeutic implications[J]. Eur Heart J2025, 46(33):3247-3260.
[30]
Zhang JVan Der Wouden PEDekker FJ. Novel 15-lipoxygenase-1 inhibitor protects cells from RSL3-induced cell death[J]. Eur J Med Chem2025290: 117517.
[31]
Doll SProneth BTyurina YY,et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol201713(1): 91-98.
[32]
Ye LWen XQin J,et al. Metabolism-regulated ferroptosis in cancer progression and therapy[J]. Cell Death Dis202415(3): 196.
[33]
Yang FXiao YDing JH,et al. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy[J]. Cell Metab202335(1): 84-100.
[34]
Pizzino GIrrera NCucinotta M,et al. Oxidative stress: harms and benefits for human health[J]. Oxid Med Cell Longev20172017: 8416763.
[35]
Patel SAWarren BARhoderick JF,et al. Differentiation of substrate and non-substrate inhibitors of transport system xc(-): an obligate exchanger of L-glutamate and L-cystine[J]. Neuropharmacology200446(2): 273-284.
[36]
Bridges RLutgen VLobner D,et al. Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling[J]. Pharmacol Rev201264(3): 780-802.
[37]
Xue XWang MCui J,et al. Glutathione metabolism in ferroptosis and cancer therapy[J]. Cancer Lett2025621: 217697.
[38]
Xiang SYan WRen X,et al. Role of ferroptosis and ferroptosis-related long non'coding RNA in breast cancer[J]. Cell Mol Biol Lett202429(1): 40.
[39]
Dai CChen XLi J,et al. Transcription factors in ferroptotic cell death[J]. Cancer Gene Ther202027(9): 645-656.
[40]
Chen XKang RKroemer G,et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol202118(5): 280-296.
[41]
Wang LLiu YDu T,et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc()[J]. Cell Death Differ202027(2): 662-675.
[42]
Wang WGreen MChoi JE,et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature2019569(7755): 270-274.
[43]
Costa IBarbosa DJBenfeito S,et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases[J]. Pharmacol Ther2023244: 108373.
[44]
Wang MChen QCheng ZY,et al. A responsive hydrogel containing bimetallic mof enabling amplified ferroptosis for cancer therapy via dual cellular homeostasis disruption[J]. Adv Funct Mater2025: e02635.
[45]
Kandasamy GMaity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics[J]. Int J Pharm2015496(2): 191-218.
[46]
Mahmoudi MSant SWang B,et al. Superparamagnetic iron oxide nanoparticles (SPIONs): development,surface modification and applications in chemotherapy[J]. Adv Drug Deliv Rev201163(1-2): 24-46.
[47]
Samari MAlamzadeh ZIrajirad R,et al. FROP-1 peptide-conjugated ultrasmall superparamagnetic nanoparticles as a targeted T1-weighted MR contrast agent for breast cancer: in vitro study[J]. BMC Biomed Eng20257(1): 5.
[48]
Pham TMCao DVDang HHQ,et al. (153)Sm-labeled Fe(3)O(4)@lapatinib nanoparticles as a potential therapeutic agent for breast cancer: synthesis,quality control,and in vivo evaluation[J]. J Mater Chem B202412(3): 678-690.
[49]
Lu YSGu FFMa YW,et al. Tumor cell membrane-camouflaged vortex magnetic nanoannulars programmed by low-frequency magnetic field: a novel anti-cancer delivery system in triple-negative breast cancer[J]. Adv Funct Mater202434(42): 16.
[50]
Zhang FLi FLu GH,et al. Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer[J]. ACS Nano201913(5): 5662-5673.
[51]
Wu GLTan STan X,et al. Recent advances in ferrocene-based nanomedicines for enhanced chemodynamic therapy[J]. Theranostics202515(2): 384-407.
[52]
Hu YFang ZYao B,et al. Ferrocene derivatives for photothermal applications[J]. ChemSusChem202417(23): e202400829.
[53]
Yang XFeng CWang P,et al. Precisely self-cooperative nanoassembly enables photothermal/ferroptosis synergistic tumor eradication[J]. Adv Healthc Mater202413(18): e2304485.
[54]
Zhang JYang JZuo T,et al. Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy[J]. Biomaterials2021266: 120429.
[55]
Yang NPan XZhou X,et al. Biomimetic nanoarchitectonics with chitosan nanogels for collaborative induction of ferroptosis and anticancer immunity for cancer therapy[J]. Adv Healthc Mater202413(7): e2302752.
[56]
Xu JTan JSong C,et al. Self-immolative amphiphilic poly(ferrocenes) for synergistic amplification of oxidative stress in tumor therapy[J]. Angew Chem Int Ed Engl202362(30): e202303829.
[57]
Chai WChen XLiu J,et al. Recent progress in functional metal-organic frameworks for bio-medical application[J]. Regen Biomater202411: rbad115.
[58]
Sun YZheng LYang Y,et al. Metal-organic framework nanocarriers for drug delivery in biomedical applications[J]. Nanomicro Lett202012(1): 103.
[59]
Tang ZLiu YHe M,et al. Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions[J]. Angew Chem Int Ed Engl201958(4): 946-956.
[60]
Cao CLu YPan X,et al. Time and space dual-blockade strategy for highly invasive nature of triple-negative breast cancer in enhanced sonodynamic therapy based on Fe-MOF nanoplatforms[J]. Adv Healthc Mater202413(15): e2304249.
[61]
Li KLin CLi M,et al. Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy[J]. ACS Nano202216(2): 2381-2398.
[62]
Khalid SAhmed EKhan Y,et al. Nanocrystalline pyrite for photovoltaic applications[J]. Chemistryselect20183(23): 6488-6524.
[63]
Zhao CLiu ZChang CC,et al. Near-infrared phototheranostic iron pyrite nanocrystals simultaneously induce dual cell death pathways via enhanced fenton reactions in triple-negative breast cancer[J]. ACS Nano202317(5): 4261-4278.
[64]
Yuan YWang LGao L. Nano-sized iron sulfide: structure,synthesis,properties,and biomedical applications[J]. Front Chem20208: 818.
[65]
Wang CLiu QHuang X,et al. Ferritin nanocages: a versatile platform for nanozyme design[J]. J Mater Chem B202311(19): 4153-4170.
[66]
Mohanty AParida ARaut RK,et al. Ferritin: a promising nanoreactor and nanocarrier for bionanotechnology[J]. ACS Bio Med Chem Au20222(3): 258-281.
[67]
Fan XZhang XLiu LC,et al. Hemopexin accumulates in kidneys and worsens acute kidney injury by causing hemoglobin deposition and exacerbation of iron toxicity in proximal tubules[J]. Kidney Int2022102(6): 1320-1330.
[68]
Bussin BMacduff MGGNgo W,et al. Discovering nanoparticle corona ligands for liver macrophage capture[J]. Nat Nanotechnol202520(7): 914-925.
[69]
Li YLZheng XDChu Q. Bio-based nanomaterials for cancer therapy[J]. Nano Today202138: 25.
[70]
Huang PWang CDeng H,et al. Surface Engineering of Nanoparticles toward Cancer Theranostics[J]. Acc Chem Res202356(13): 1766-1779.
[71]
Sabit HPawlik TMRadwan F,et al. Precision nanomedicine: navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery[J]. Mol Cancer202524(1): 160.
[72]
Ma PLuo QChen J,et al. Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice[J]. Int J Nanomedicine20127: 4809-4818.
[73]
Zhang QYan SYan X,et al. Recent advances in metal-organic frameworks: Synthesis,application and toxicity[J]. Sci Total Environ2023902: 165944.
[1] 深圳市医学会乳腺病学分会, 深圳市医学会肿瘤学分会, 深圳市医师协会乳腺专科医师分会, 深圳市健康管理协会乳房健康与康复管理专业委员会, 深圳市抗癌协会乳腺癌专业委员会, 深圳市抗癌协会肿瘤放射治疗专业委员会, 深圳市中西医结合学会甲状腺乳腺病专业委员会. 乳腺癌新辅助治疗的疗效预测和疗效评价专家共识(2025版)[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 321-330.
[2] 李雨秋, 莫红楠. 乳腺癌肿瘤微环境特征及免疫治疗新进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 331-338.
[3] 金烨莹, 王艺璇, 杨瑞. 基于单细胞RNA测序的乳腺癌肿瘤相关巨噬细胞亚群鉴定与临床预后分析[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 339-347.
[4] 王天艺, 李筝, 许锐. 激素受体阳性/HER-2阴性早期乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 352-357.
[5] 刘锦婷, 梁高强, 李文涛. 乳房切除术后感觉功能重建的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 358-361.
[6] 樊晓宇, 刘风侠, 马力. 年轻乳腺癌患者养育忧虑的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 369-372.
[7] 谭路露, 李梦冉, 张晓莹, 唐立华, 谭宇彦. 原发性乳腺癌术后小肠转移一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 373-376.
[8] 杨晶, 高洁, 李淑琴, 夏铀铀. 同时性双侧乳腺癌一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 377-380.
[9] 孙圣梅, 习一清, 安宁. 人表皮生长因子受体2阳性型乳腺癌新辅助治疗响应的基因预测模型[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 332-339.
[10] 阮希伦, 单臻, 范远键, 林颖, 王深明, 龙健婷, 徐向东. 一项妊娠相关性乳腺癌病理学特征、治疗方案及预后信息的回顾性研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 340-344.
[11] 王达, 朱建敏. 血小板/淋巴细胞计数比值对乳腺癌新辅助化疗疗效的预测效能[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 650-653.
[12] 马超, 王传嘉, 张武坊. 经腋窝入路单孔腔镜保乳术与传统开放手术治疗早期乳腺癌的对比研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 674-677.
[13] 孟庆杰, 印玉龙, 韩晓刚, 张浩萌, 江思源, 刘向华, 吕勇刚, 刘曌宇. 保留皮肤乳房切除+乳腺重建术治疗早期乳腺癌的近期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 646-649.
[14] 刘小娜, 史博慧, 马晓霞, 陈瑶, 郝娜. 乳腺癌不同手术方式对术后并发症及康复影响的对比观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 551-554.
[15] 郭雯, 任谊, 魏庆忠. 改良VSD装置在乳腺癌改良根治术后腋窝引流中的临床应用价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 555-558.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?