切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 331 -338. doi: 10.3877/cma.j.issn.1674-0807.2025.06.002

专家论坛

乳腺癌肿瘤微环境特征及免疫治疗新进展
李雨秋, 莫红楠()   
  1. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院内科
  • 收稿日期:2025-09-08 出版日期:2025-12-01
  • 通信作者: 莫红楠
  • 基金资助:
    国家科技重大专项(2025ZD0543900); 国家自然科学基金项目(82573485)

Characteristics of tumor microenvironment and immunotherapy in breast cancer

Yuqiu Li, Hongnan Mo()   

  1. Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • Received:2025-09-08 Published:2025-12-01
  • Corresponding author: Hongnan Mo
引用本文:

李雨秋, 莫红楠. 乳腺癌肿瘤微环境特征及免疫治疗新进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 331-338.

Yuqiu Li, Hongnan Mo. Characteristics of tumor microenvironment and immunotherapy in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2025, 19(06): 331-338.

乳腺癌的肿瘤微环境具有高度异质性和动态性,对疾病进展和治疗反应影响显著。以往观点认为乳腺癌免疫原性较低,但研究发现三阴性乳腺癌和HER-2阳性乳腺癌存在较多肿瘤浸润淋巴细胞,如CD8+T细胞和三级淋巴结构;这可能与更好的预后和免疫治疗反应有关。除了肿瘤浸润淋巴细胞,肿瘤微环境还包括巨噬细胞、树突状细胞、肥大细胞和成纤维细胞等,它们通过多种机制促进免疫抑制或激活。代谢重编程可进一步调控乳腺癌肿瘤微环境的免疫状态,对乳腺癌的发生、发展、转移和治疗反应产生影响。虽然免疫检查点抑制剂,尤其是抗PD-1/PD-L1药物,已在三阴性乳腺癌中显示出生存获益,但其疗效仅限于部分患者。因此,未来仍需进一步明确获益人群,减少无效治疗,优化免疫联合治疗策略,开发新型免疫治疗药物,探索疗效预测的生物标志物,最终实现以个体免疫为特征的精准治疗。笔者系统总结了乳腺癌肿瘤微环境的组成及其代谢重编程特征,概述乳腺癌免疫治疗的主要进展,以期为优化治疗策略和推动个体化免疫治疗提供参考。

The tumor microenvironment of breast cancer is highly heterogeneous and dynamic, influencing disease progression and treatment response. Traditionally, breast cancer was considered to have low immunogenicity, but studies have found that triple negative breast cancer and HER-2 positive subtype have more tumor-infiltrating lymphocytes, such as CD8+ T cells and tertiary lymphoid structures, which may be associated with better prognosis and immune therapy response. In addition to tumor-infiltrating lymphocytes, the tumor microenvironment also includes macrophages, dendritic cells, mast cells and fibroblasts, which promote immune suppression or activation through various mechanisms. Metabolic reprogramming can further regulate the immune status of tumor microenvironment, influencing the occurrence, development, metastasis and treatment response of breast cancer. Although immune checkpoint inhibitors, especially anti-PD-1/PD-L1 drugs, have shown survival benefits in triple negative breast cancer patients, their efficacy is still limited to only a portion of patients. Therefore, in the future, it is necessary to further clarify the beneficiary population, reduce ineffective treatment, optimize combination treatment strategies, develop new immunotherapy drugs and explore predictive biomarkers, which may ultimately achieve precise treatment based on individual immune characteristics. This review systematically summarizes the composition of tumor microenvironment of breast cancer and its metabolic reprogramming characteristics, and discusses the current progress in breast cancer immunotherapy, which may provide insights for the optimization of treatment strategies and individualized immunotherapy.

[1]
Harris MASavas PVirassamy B,et al. Towards targeting the breast cancer immune microenvironment[J]. Nat Rev Cancer202424(8): 554-577.
[2]
Zhu YZhu XTang C,et al. Progress and challenges of immunotherapy in triple-negative breast cancer[J]. Biochim Biophys Acta Rev Cancer20211876(2): 188593.
[3]
Kundu MButti RPanda VK,et al. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer[J]. Mol Cancer202423(1): 92.
[4]
El Bairi KHaynes HRBlackley E,et al. The tale of TIL in breast cancer: a report from the International Immuno-Oncology Biomarker Working Group[J]. NPJ Breast Cancer20217(1): 150.
[5]
Leon-Ferre RAJonas SFSalgado R,et al. Tumor-infiltrating lymphocytes in triple-negative breast cancer[J]. JAMA2024331(13): 1135-1144.
[6]
Salgado RDenkert CDemaria S,et al. The evaluation of tumor-infiltrating lymphocytes (TIL) in breast cancer: recommendations by an International TIL Working Group 2014[J]. Ann Oncol201526(2): 259-271.
[7]
Zhang QWu S. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response[J]. Front Immunol202213: 1063711.
[8]
Li RCao L. The role of tumor-infiltrating lymphocytes in triple-negative breast cancer and the research progress of adoptive cell therapy[J]. Front Immunol202314: 1194020.
[9]
Zhang YChen HMo H,et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer[J]. Cancer Cell202139(12): 1578-1593. e8.
[10]
McRitchie BRAkkaya B. Exhaust the exhausters: targeting regulatory T cells in the tumor microenvironment[J]. Front Immunol202213: 940052.
[11]
Triki HCharfi SBouzidi L,et al. CD155 expression in human breast cancer: Clinical significance and relevance to natural killer cell infiltration[J]. Life Sci2019231: 116543.
[12]
Hendry SSalgado RGevaert T,et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immunooncology biomarkers working group: part 1: assessing the host immune response,TIL in invasive breast carcinoma and ductal carcinoma in situ,metastatic tumor deposits and areas for further research[J]. Adv Anat Pathol201724(5): 235-251.
[13]
Valenza CTaurelli Salimbeni BSantoro C,et al. Tumor infiltrating lymphocytes across breast cancer subtypes: current issues for biomarker assessment[J]. Cancers (Basel)202315(3): 767.
[14]
Rizzo ARicci AD. Biomarkers for breast cancer immunotherapy: PD-L1,TIL,and beyond[J]. Expert Opin Investig Drugs202231(6): 549-555.
[15]
Porta FMSajjadi EVenetis K,et al. Immune biomarkers in triple-negative breast cancer: improving the predictivity of current testing methods[J]. J Pers Med202313(7): 1176.
[16]
Kotsifaki AAlevizopoulos NDimopoulou V,et al. Unveiling the immune microenvironment's role in breast cancer: a glimpse into promising frontiers[J]. Int J Mol Sci202324(20): 15332.
[17]
Zhang YChen HMo H,et al. Distinct cellular mechanisms underlie chemotherapies and PD-L1 blockade combinations in triple-negative breast cancer[J]. Cancer Cell202543(3): 446-463. e7.
[18]
Larionova ITuguzbaeva GPonomaryova A,et al. Tumor-associated macrophages in human breast,colorectal,lung,ovarian and prostate cancers[J]. Front Oncol202010: 566511.
[19]
Cardoso FKyriakides SOhno S,et al. Early breast cancer: ESMO clinical practice guidelines for diagnosis,treatment and follow-up[J]. Ann Oncol201930(8): 1194-1220.
[20]
Yousefi MNosrati RSalmaninejad A,et al. Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis[J]. Cell Oncol (Dordr)201841(2): 123-140.
[21]
Dallavalasa SBeeraka NMBasavaraju CG,et al. The role of tumor associated macrophages (TAMs) in cancer progression,chemoresistance,angiogenesis and metastasis - current status[J]. Curr Med Chem202128(39): 8203-8236.
[22]
Huang XCao JZu X. Tumor-associated macrophages: an important player in breast cancer progression[J]. Thorac Cancer202213(3): 269-276.
[23]
Balta EWabnitz GHSamstag Y. Hijacked immune cells in the tumor microenvironment: molecular mechanisms of immunosuppression and cues to improve T cell-based immunotherapy of solid tumors[J]. Int J Mol Sci202122(11): 5736.
[24]
Zhan CJin YXu X,et al. Antitumor therapy for breast cancer: Focus on tumor-associated macrophages and nanosized drug delivery systems[J]. Cancer Med202312(10): 11049-11072.
[25]
Bassez AVos HVan Dyck L,et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer[J]. Nat Med202127(5): 820-832.
[26]
Broz MLBinnewies MBoldajipour B,et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity[J]. Cancer Cell201426(5): 638-652.
[27]
Tietscher SWagner JAnzeneder T,et al. A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer[J]. Nat Commun202314(1): 98.
[28]
Bense RDSotiriou CPiccart-Gebhart MJ,et al. Relevance of tumor-infiltrating immune cell composition and functionality for disease outcome in breast cancer[J]. J Natl Cancer Inst2017109(1): djw192.
[29]
Ali HRChlon LPharoah PD,et al. Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study[J]. PLoS Med201613(12): e1002194.
[30]
Majorini MTColombo MPLecis D. Few,but efficient: the role of mast cells in breast cancer and other solid tumors[J]. Cancer Res202282(8): 1439-1447.
[31]
Reddy SMReuben ABarua S,et al. Poor response to neoadjuvant chemotherapy correlates with mast cell infiltration in inflammatory breast cancer[J]. Cancer Immunol Res20197(6): 1025-1035.
[32]
Giorello MBBorzone FRLabovsky V,et al. Cancer-associated fibroblasts in the breast tumor microenvironment[J]. J Mammary Gland Biol Neoplasia202126(2): 135-155.
[33]
Suh JKim DHLee YH,et al. Fibroblast growth factor-2,derived from cancer-associated fibroblasts,stimulates growth and progression of human breast cancer cells via FGFR1 signaling[J]. Mol Carcinog202059(9): 1028-1040.
[34]
Attieh YClark AGGrass C,et al. Cancer-associated fibroblasts lead tumor invasion through integrin-β3-dependent fibronectin assembly[J]. J Cell Biol2017216(11): 3509-3520.
[35]
Glentis AOertle PMariani P,et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane[J]. Nat Commun20178(1): 924.
[36]
Houthuijzen JMJonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment[J]. Cancer Metastasis Rev201837(4): 577-597.
[37]
Ursini-Siegel JSiegel PM. The influence of the pre-metastatic niche on breast cancer metastasis[J]. Cancer Lett2016380(1): 281-288.
[38]
Zhou YWang HLuo Y,et al. Effect of metabolism on the immune microenvironment of breast cancer[J]. Biochim Biophys Acta Rev Cancer20231878(2): 188861.
[39]
Liu SZhang XWang W,et al. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer[J]. Mol Cancer202423(1): 261.
[40]
Waickman ATPowell JD. mTOR,metabolism,and the regulation of T-cell differentiation and function[J]. Immunol Rev2012249(1): 43-58.
[41]
Frauwirth KARiley JLHarris MH,et al. The CD28 signaling pathway regulates glucose metabolism[J]. Immunity200216(6): 769-777.
[42]
Rizwan ASerganova IKhanin R,et al. Relationships between LDH-A,lactate,and metastases in 4T1 breast tumors[J]. Clin Cancer Res201319(18): 5158-5169.
[43]
Serganova ICohen IJVemuri K,et al. LDH-A regulates the tumor microenvironment via HIF-signaling and modulates the immune response[J]. PLoS One201813(9): e0203965.
[44]
Thomas RShaath HNaik A,et al. Identification of two HLA-A*0201 immunogenic epitopes of lactate dehydrogenase C (LDHC): potential novel targets for cancer immunotherapy[J]. Cancer Immunol Immunother202069(3): 449-463.
[45]
Lieu ELNguyen TRhyne S,et al. Amino acids in cancer[J]. Exp Mol Med202052(1): 15-30.
[46]
Edwards DNNgwa VMRaybuck AL,et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer[J]. J Clin Invest2021131(4): e140100.
[47]
Mao XXu JWang W,et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer202120(1): 131.
[48]
Su XXu YFox GC,et al. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment[J]. J Clin Invest2021131(20): e145296.
[49]
Cao YFeng YZhang Y,et al. L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo[J]. BMC Cancer201616: 343.
[50]
Gruosso TGigoux MManem VSK,et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers[J]. J Clin Invest2019129(4): 1785-1800.
[51]
Long YTao HKarachi A,et al. Dysregulation of glutamate transport enhances Treg function that promotes VEGF blockade resistance in glioblastoma[J]. Cancer Res202080(3): 499-509.
[52]
Timperi EGueguen PMolgora M,et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer[J]. Cancer Res202282(18): 3291-3306.
[53]
Li YWan YYZhu B. Immune Cell Metabolism in Tumor Microenvironment[J]. Adv Exp Med Biol20171011: 163-196.
[54]
Ghashghaeinia MKöberle MMrowietz U,et al. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes[J]. Cell Cycle201918(12): 1316-1334.
[55]
Dai XLu LDeng S,et al. USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer[J]. Theranostics202010(20): 9332-9347.
[56]
Qing JZhang ZNovák P,et al. Mitochondrial metabolism in regulating macrophage polarization: an emerging regulator of metabolic inflammatory diseases[J]. Acta Biochim Biophys Sin (Shanghai)202052(9): 917-926.
[57]
Huber RMeier BOtsuka A,et al. Tumour hypoxia promotes melanoma growth and metastasis via high mobility group Box-1 and M2-like macrophages[J]. Sci Rep20166: 29914.
[58]
Vats DMukundan LOdegaard JI,et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation[J]. Cell Metab20064(1): 13-24.
[59]
Niu XMa JLi J,et al. Sodium/glucose cotransporter 1-dependent metabolic alterations induce tamoxifen resistance in breast cancer by promoting macrophage M2 polarization[J]. Cell Death Dis202112(6): 509.
[60]
Ivey JWBonakdar MKanitkar A,et al. Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment[J]. Cancer Lett2016380(1): 330-339.
[61]
Loi SSalgado RSchmid P,et al. Association between biomarkers and clinical outcomes of pembrolizumab monotherapy in patients with metastatic triple-negative breast cancer: KEYNOTE-086 exploratory analysis[J]. JCO Precis Oncol20237: e2200317.
[62]
Emens LAMolinero LLoi S,et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the IMpassion130 study[J]. J Natl Cancer Inst2021113(8): 1005-1016.
[63]
Emens LACruz CEder JP,et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study[J]. JAMA Oncol20195(1): 74-82.
[64]
Emens LALoi S. Immunotherapy approaches for breast cancer patients in 2023[J]. Cold Spring Harb Perspect Med202313(4): a041332.
[65]
Cortes JRugo HSCescon DW,et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer[J]. N Engl J Med2022387(3): 217-226.
[66]
Shahbandi AChiu FYUngerleider NA,et al. Breast cancer cells survive chemotherapy by activating targetable immune-modulatory programs characterized by PD-L1 or CD80[J]. Nat Cancer20223(12): 1513-1533.
[67]
Pusztai LDenkert CO'Shaughnessy J,et al. Event-free survival by residual cancer burden with pembrolizumab in early-stage TNBC: exploratory analysis from KEYNOTE-522[J]. Ann Oncol202435(5): 429-436.
[68]
王墨之,刘诗杨,徐莹莹. 乳腺癌免疫治疗现状与展望[J]. 中华内分泌外科杂志(中英文)202418(5): 609-613.
[69]
Wagner JRapsomaniki MAChevrier S,et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer[J]. Cell2019177(5): 1330-1345. e18.
[70]
Wu SZAl-Eryani GRoden DL,et al. A single-cell and spatially resolved atlas of human breast cancers[J]. Nat Genet202153(9): 1334-1347.
[71]
Keren LBosse MMarquez D,et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging[J]. Cell2018174(6): 1373-1387. e19.
[72]
Denkert Cvon Minckwitz GDarb-Esfahani S,et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. Lancet Oncol201819(1): 40-50.
[73]
Losurdo AScirgolea CAlvisi G,et al. Single-cell profiling defines the prognostic benefit of CD39high tissue resident memory CD8+ T cells in luminal-like breast cancer[J]. Commun Biol20214(1): 1117.
[74]
Dieci MVGuarneri VTosi A,et al. Neoadjuvant chemotherapy and immunotherapy in luminal b-like breast cancer: results of the phase Ⅱ GIADA trial[J]. Clin Cancer Res202228(2): 308-317.
[75]
Loi SCurigliano GSalgado RF,et al. LBA20 A randomized,double-blind trial of nivolumab (NIVO) vs placebo (PBO) with neoadjuvant chemotherapy (NACT) followed by adjuvant endocrine therapy (ET) ± NIVO in patients (pts) with high-risk,ER+ HER2− primary breast cancer (BC)[J]. Ann Oncol202334: S1259-S1260.
[76]
Cardoso FO'Shaughnessy JLiu Z,et al. Pembrolizumab and chemotherapy in high-risk,early-stage,ER(+)/HER2(-) breast cancer: a randomized phase 3 trial[J]. Nat Med202531(2): 442-448.
[77]
Schlam ICorti CSammons S,et al. Checkpoint inhibition for early-stage hormone receptor-positive breast cancer[J]. Expert Opin Biol Ther202424(6): 511-520.
[78]
Weigelt BEberle CCowell CF,et al. Metaplastic breast carcinoma: more than a special type[J]. Nat Rev Cancer201414(3): 147-148.
[79]
Adams SOthus MPatel SP,et al. A multicenter phase Ⅱ trial of ipilimumab and nivolumab in unresectable or metastatic metaplastic breast cancer: cohort 36 of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART,SWOG S1609)[J]. Clin Cancer Res202228(2): 271-278.
[80]
Roussos Torres ETHo WJDanilova L,et al. Entinostat,nivolumab and ipilimumab for women with advanced HER2-negative breast cancer: a phase Ib trial[J]. Nat Cancer20245(6): 866-879.
[81]
Rafiq SHackett CSBrentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy[J]. Nat Rev Clin Oncol202017(3): 147-167.
[82]
Yang YHLiu JWLu C,et al. CAR-T cell therapy for breast cancer: from basic research to clinical application[J]. Int J Biol Sci202218(6): 2609-2626.
[83]
Barzaman KKarami JZarei Z,et al. Breast cancer: Biology,biomarkers,and treatments[J]. Int Immunopharmacol202084: 106535.
[84]
Swain SMShastry MHamilton E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nat Rev Drug Discov202322(2): 101-126.
[85]
Hassan RThomas AAlewine C,et al. Mesothelin immunotherapy for cancer: ready for prime time?[J]. J Clin Oncol201634(34): 4171-4179.
[86]
Hamilton DHRoselli MFerroni P,et al. Brachyury,a vaccine target,is overexpressed in triple-negative breast cancer[J]. Endocr Relat Cancer201623(10): 783-796.
[87]
Lin HLee EHestir K,et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome[J]. Science2008320(5877): 807-811.
[88]
Autio KAKlebanoff CASchaer D,et al. Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: a phase I study[J]. Clin Cancer Res202026(21): 5609-5620.
[89]
Hammerl DSmid MTimmermans AM,et al. Breast cancer genomics and immuno-oncological markers to guide immune therapies[J]. Semin Cancer Biol201852(Pt 2): 178-188.
[90]
Basudan AM. The role of immune checkpoint inhibitors in cancer therapy[J]. Clin Pract202213(1): 22-40.
[1] 深圳市医学会乳腺病学分会, 深圳市医学会肿瘤学分会, 深圳市医师协会乳腺专科医师分会, 深圳市健康管理协会乳房健康与康复管理专业委员会, 深圳市抗癌协会乳腺癌专业委员会, 深圳市抗癌协会肿瘤放射治疗专业委员会, 深圳市中西医结合学会甲状腺乳腺病专业委员会. 乳腺癌新辅助治疗的疗效预测和疗效评价专家共识(2025版)[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 321-330.
[2] 金烨莹, 王艺璇, 杨瑞. 基于单细胞RNA测序的乳腺癌肿瘤相关巨噬细胞亚群鉴定与临床预后分析[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 339-347.
[3] 王天艺, 李筝, 许锐. 激素受体阳性/HER-2阴性早期乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 352-357.
[4] 刘锦婷, 梁高强, 李文涛. 乳房切除术后感觉功能重建的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 358-361.
[5] 邓宝, 郭子琳, 仲雷. 乳腺癌治疗中的铁死亡机制与铁基纳米材料应用进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 362-368.
[6] 樊晓宇, 刘风侠, 马力. 年轻乳腺癌患者养育忧虑的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 369-372.
[7] 钱龙, 蔡大明, 王行舟, 艾世超, 胡琼源, 孙锋, 宋鹏, 王峰, 王萌, 陆晓峰, 朱欢欢, 沈晓菲, 管文贤. 局部不可切除胃癌转化治疗(联合免疫治疗)后淋巴结转移的相关危险因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 624-627.
[8] 王思竣, 王琼, 李珂雨, 袁新普, 张硕珉, 马睿, 谢天宇, 张朝军. 胃上部癌新辅助化疗联合免疫治疗后实施近端胃切除术的临床疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 637-641.
[9] 孟庆杰, 印玉龙, 韩晓刚, 张浩萌, 江思源, 刘向华, 吕勇刚, 刘曌宇. 保留皮肤乳房切除+乳腺重建术治疗早期乳腺癌的近期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 646-649.
[10] 王达, 朱建敏. 血小板/淋巴细胞计数比值对乳腺癌新辅助化疗疗效的预测效能[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 650-653.
[11] 马超, 王传嘉, 张武坊. 经腋窝入路单孔腔镜保乳术与传统开放手术治疗早期乳腺癌的对比研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 674-677.
[12] 张宇涵, 吴添庆, 高汶卿, 郑梽楷, 贺珉睿, 周仲国. 不可切除性肝内胆管癌不同治疗方式疗效和安全性的Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 939-947.
[13] 许侨东, 马志延, 冯庚壬, 钟海彬, 刘坚锐, 古松钢. 肝肺多发性原发性癌转化治疗后行腹腔镜肝右前叶切除术一例(附视频)[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 973-976.
[14] 王春茂, 韩鸣, 王子彤. 局限期小细胞肺癌新辅助治疗后完全病理学缓解五例[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 550-554.
[15] 侯雨函, 姜福金, 王苏贵. 膀胱癌免疫治疗的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 471-475.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?