切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (02) : 113 -118. doi: 10.3877/cma.j.issn.1674-0807.2025.02.009

综述

选择性多聚腺苷酸化在乳腺癌中的研究进展
乔平1, 杜华2,3, 师迎旭3,()   
  1. 1. 010050 呼和浩特,内蒙古医科大学第一临床医学院
    2. 010050 呼和浩特,内蒙古医科大学基础医学院
    3. 010050 呼和浩特,内蒙古医科大学附属医院检验科
  • 收稿日期:2024-11-15 出版日期:2025-04-01
  • 通信作者: 师迎旭
  • 基金资助:
    内蒙古自治区自然科学基金项目(2024MS08069)内蒙古医学科学院公立医院科研联合基金科技项目(2024GLLH0323)

Research progress of alternative polyadenylation in breast cancer

Ping Qiao, Hua Du, Yingxu Shi()   

  • Received:2024-11-15 Published:2025-04-01
  • Corresponding author: Yingxu Shi
引用本文:

乔平, 杜华, 师迎旭. 选择性多聚腺苷酸化在乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 113-118.

Ping Qiao, Hua Du, Yingxu Shi. Research progress of alternative polyadenylation in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2025, 19(02): 113-118.

选择性多聚腺苷酸化(APA)是一种通过选择不同多聚腺苷酸化信号调控前体mRNA3’端加工的转录后机制。前体mRNA经APA加工会生成不同编码区或3’非翻译区(3’UTR)的亚型,影响mRNA的稳定性、翻译效率及蛋白质的类型。研究表明,APA失调与乳腺癌进展密切相关:编码区APA通过内含子多腺苷酸化产生截短型蛋白,而非编码区APA介导的3’UTR缩短可逃避miRNA抑制,上调原癌基因表达。乳腺癌中APA调控因子异常表达通过全局性改变多聚腺苷酸化信号选择,驱动恶性表型。本文系统总结了APA的加工机制、分类及其调控因子在乳腺癌中的功能,强调APA失调作为潜在诊断标志物和治疗靶点的价值。

图1 参与选择性多聚腺苷酸化加工过程的顺式作用调控元件和反式作用因子 注:CFIm为剪切因子复合物I;CPSF为剪切多聚腺苷酸化特异因子;PAS为多聚腺苷酸化信号;FIP1为Poly(A)聚合酶1相互作用因子;WDR33为WD重复结构域33;CS为剪切位点;PAP为poly(A)聚合酶;PABPN1为核poly(A)结合蛋白1;PCF11为剪切多聚腺苷酸化因子亚基11;CLP1为剪切多聚腺苷酸化因子1;symplekin为连接蛋白;CSTF为剪切激活因子;RNAP Ⅱ为RNA聚合酶 Ⅱ;CTD为羧基末端域。
图2 APA的分类 注:APA为选择性多聚腺苷酸化;PAS为多聚腺苷酸化信号;mRNA为微小RNA
表1 与乳腺癌相关的异常APA调控因子
[1]
Caow W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791.
[2]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J].CA Cancer J Clin, 2021, 71(1): 7-33.
[3]
Tudek A, Lloret-Llinares M, Jensen TH. The multitasking polyA tail:nuclear RNA maturation, degradation and export[J]. Philos Trans R Soc Lond B Biol Sci, 2018, 373(1762): 20180169.
[4]
田路松, 赵晓航. 可变多聚腺苷酸化与肿瘤[J]. 生命科学, 2019,31(3): 232-240.
[5]
Tian B, Manley JL. Alternative polyadenylation of mRNA precursors[J]. Nat Rev Mol Cell Biol, 2017, 18(1): 18-30.
[6]
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease[J]. Cardiovasc Res, 2023, 119(6): 1324-35.
[7]
Yuan F, Hankey W, Wagner EJ, et al. Alternative polyadenylation of mRNA and its role in cancer[J]. Genes Dis, 2021, 8(1): 61-72.
[8]
徐海冬, 宁博林, 牟芳, 等. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15.
[9]
Masamha CP,Wagner EJ.Thecontribution of alternative polyadenylation to the cancer phenotype[J]. Carcinogenesis, 2018, 39(1): 2-10.
[10]
徐本锦,刘玲. 前体mRNA的选择性多聚腺苷酸化与人类疾病[J]. 生物化学与生物物理进展, 2020, 47(3): 199-209.
[11]
Mohanan NK, Shaji F, Koshre GR, et al. Alternative polyadenylation:an enigma of transcript length variation in health and disease[J].Wiley Interdiscip Rev RNA, 2022, 13(1): e1692.
[12]
Dharmalingam P, Mahalingam R, Yalamanchili HK, et al. Emerging roles of alternative cleavage and polyadenylation (APA) in human disease[J]. J Cell Physiol, 2022, 237(1): 149-60.
[13]
Ren F, Zhang N, Zhang L, et al. Alternative Polyadenylation: a new frontier in post transcriptional regulation[J]. Biomark Res, 2020,8(1): 67.
[14]
Guo S, Lin S. mRNA alternative polyadenylation (APA) in regulation of gene expression and diseases[J]. Genes Dis, 2023, 10(1): 165-174.
[15]
Singh I, Lee SH, Sperling AS, et al. Widespread intronic polyadenylation diversifies immune cell transcriptomes[J]. Nat Commun, 2018, 9(1): 1716.
[16]
Tian B, Pan Z, Lee JY. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing[J]. Genome Res, 2007, 17(2): 156-165.
[17]
Elkon R, Drost J, Van Haaften G, et al. E2F mediates enhanced alternative polyadenylation in proliferation[J]. Genome Biol, 2012, 13(7): R59.
[18]
Turner RE, Henneken LM, Liem-Weits M, et al. Requirement for cleavage factor II(m) in the control of alternative polyadenylation in breast cancer cells[J]. RNA, 2020, 26(8): 969-981.
[19]
Zhong J, Cao RX, Hong T, et al. Identification and expression analysis of a novel transcript of the human PRMT2 gene resulted from alternative polyadenylation in breast cancer[J]. Gene, 2011, 487(1): 1-9.
[20]
Ni TK, Kuperwasser C. Premature polyadenylation of MAGI3 produces a dominantly-acting oncogene in human breast cancer[J]. Elife, 2016,5: e14730.
[21]
Pereira-Castro I, Moreira A. On the function and relevance of alternative 3’-UTRs in gene expression regulation[J]. Wiley Interdiscip Rev RNA, 2021, 12(5): e1653.
[22]
Xia Z, Donehower LA, Cooper TA, et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3’-UTR landscape across seven tumour types[J]. Nat Commun, 2014, 5: 5274.
[23]
Wang X, Li M, Yin Y, et al. Profiling of alternative polyadenylation sites in luminal B breast cancer using the SAPAS method[J]. Int J Mol Med, 2015, 35(1): 39-50.
[24]
Wang L, Hu X, Wang P, et al. Integrative 3’ untranslated regionbased model to identify patients with low risk of axillary lymph node metastasis in operable triple-negative breast cancer[J]. Oncologist,2019, 24(1): 22-30.
[25]
Akman HB, Oyken M, Tuncer T, et al. 3’UTR shortening and EGF signaling: implications for breast cancer[J]. Hum Mol Genet, 2015,24(24): 6910-6920.
[26]
Mayr C, Bartel DP. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells[J].Cell, 2009, 138(4): 673-684.
[27]
Gillen AE, Brechbuhl HM, Yamamoto TM, et al. Alternative polyadenylation of PRELID1 regulates mitochondrial ROS signaling and cancer outcomes[J]. Mol Cancer Res, 2017, 15(12): 1741-1751.
[28]
Yan H, Tian R, Wang W, et al. Aberrant Ki-67 expression through 3’UTR alternative polyadenylation in breast cancers[J]. FEBS Open Bio, 2018, 8(3): 332-338.
[29]
Guo Q, Wang H, Duan J, et al. An alternatively spliced p62 isoform confers resistance to chemotherapy in breast cancer[J]. Cancer Res,2022, 82(21): 4001-4015.
[30]
Tan S, Ding K, Chong QY, et al. Post-transcriptional regulation of ERBB2 by miR26a/b and HuR confers resistance to tamoxifen in estrogen receptor-positive breast cancer cells[J]. J Biol Chem, 2017,292(33): 13551-13564.
[31]
Miles WO, Lembo A, Volorio A, et al. Alternative polyadenylation in triple-negative breast tumors allows NRAS and c-JUN to bypass PUMILIO posttranscriptional regulation[J]. Cancer Res, 2016,76(24): 7231-7241.
[32]
Matoulkova E, Sommerova L, Pastorek M, et al. Regulation of AGR2 expression via 3’UTR shortening[J]. Exp Cell Res, 2017, 356(1):40-47.
[33]
Akman BH, Can T, Erson-Bensan AE. Estrogen-induced upregulation and 3’-UTR shortening of CDC6[J]. Nucleic Acids Res, 2012,40(21): 10679-10688.
[34]
Park HJ, Ji P, Kim S, et al. 3’ UTR shortening represses tumorsuppressor genes in trans by disrupting ceRNA crosstalk[J]. Nat Genet, 2018, 50(6): 783-789.
[35]
Jafari Najaf Abadi MH, Shafabakhsh R, Asemi Z, et al. CFIm25 and alternative polyadenylation: conflicting roles in cancer[J]. Cancer Lett, 2019, 459: 112-121.
[36]
Xiao S, Gu H, Deng L, et al. Relationship between NUDT21 mediated alternative polyadenylation process and tumor[J]. Front Oncol, 2023,13: 1052012.
[37]
Ge Y, Huang J, Chen R, et al. Downregulation of CPSF6 Leads to global mRNA 3’ UTR shortening and enhanced antiviral immune responses[J]. PLoS Pathog, 2024, 20(2): e1012061.
[38]
Brumbaugh J, Di Stefano B, Wang X, et al. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling[J].Cell, 2018, 172(3): 629-631.
[39]
Wang BJ, Liu DC, Guo QY, et al. NUDT21 suppresses breast cancer tumorigenesis through regulating CPSF6 expression[J]. Cancer Manag Res, 2020, 12: 3069-3078.
[40]
Tamaddon M, Shokri G, Hosseini Rad SMA, et al. Involved microRNAs in alternative polyadenylation intervene in breast cancer via regulation of cleavage factor “CFIm25”[J]. Sci Rep, 2020, 10(1):11608.
[41]
Binothman N, Hachim IY, Lebrun JJ, et al. CPSF6 is a clinically relevant breast cancer vulnerability target: role of CPSF6 in breast cancer[J]. EBioMedicine, 2017, 21: 65-78.
[42]
Dharmalingam P, Mahalingam R, Yalamanchili HK, et al. Emerging roles of alternative cleavage and polyadenylation (APA) in human disease[J]. J Cell Physiol, 2022, 237(1): 149-160.
[43]
Gruber AJ, Schmidt R, Gruber AR, et al. A comprehensive analysis of 3’ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation[J]. Genome Res, 2016, 26(8): 1145-1159.
[44]
Mo L, Meng L, Huang Z, et al. An analysis of the role of HnRNP C dysregulation in cancers[J]. Biomark Res, 2022, 10(1): 19.
[45]
Wu Y, Zhao W, Liu Y, et al. Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response[J]. EMBO J, 2018, 37(23): e99017.
[46]
Lv W, Tan Y, Xiong M, et al. Analysis and validation of m6A regulatory network: a novel circBACH2/has-miR-944/HNRNPC axis in breast cancer progression[J]. J Transl Med, 2021, 19(1): 527.
[47]
Li W, Li W, Laishram RS, et al. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases[J]. Nucleic Acids Res, 2017, 45(15): 8930-8942.
[48]
Komini C, Theohari I, Lambrianidou A, et al. PAPOLA contributes to cyclin D1 mRNA alternative polyadenylation and promotes breast cancer cell proliferation[J]. J Cell Sci, 2021, 134(7): jcs252304.
[49]
Nagaoka K, Fujii K, Zhang H, et al. CPEB1 mediates epithelial-tomesenchyme transition and breast cancer metastasis[J]. Oncogene,2016, 35(22): 2893-2901.
[50]
Sovijit W, Sovijit W, Ishii Y, et al. Estrogen promotes increased breast cancer cell proliferation and migration through downregulation of CPEB1 expression[J]. Biochem Biophys Res Commun, 2021, 534: 871-876.
[51]
Lu XX, Yang WX, Pei YC, et al. An in vivo CRISPR screen identifies that SNRPC promotes triple-negative breast cancer progression[J]. Cancer Res, 2023, 83(12): 2000-2015.
[52]
Ding J, Su Y, Liu Y, et al. The role of CSTF2 in cancer: from technology to clinical application[J]. Cell Cycle, 2023, 22(23-24):2622-2636.
[53]
Mbita Z, Hull R, Mbele M, et al. Expression analysis of RbBP6 in human cancers: a prospective biomarker[J]. Anticancer Drugs, 2019,30(8): 767-773.
[54]
Motadi LR, Lekganyane MM, Moela P. RBBP6 expressional effects on cell proliferation and apoptosis in breast cancer cell lines with distinct p53 statuses[J]. Cancer Manag Res, 2018, 10: 3357-3369.
[55]
Di Giammartino DC, Li W, Ogami K, et al. RBBP6 isoforms regulate the human polyadenylation machinery and modulate expression of mRNAs with AU-rich 3’ UTRs[J]. Genes Dev, 2014, 28(20):2248-2260.
[56]
Wang L, Lang GT, Xue MZ, et al. Dissecting the heterogeneity of the alternative polyadenylation profiles in triple-negative breast cancers[J].Theranostics, 2020, 10(23): 10531-10547.
[57]
Xiang Y, Ye Y, Lou Y, et al. Comprehensive characterization of alternative polyadenylation in human cancer[J]. J Natl Cancer Inst,2018, 110(4): 379-389.
[58]
Kim N, Chung W, Eum HH, et al. Alternative polyadenylation of single cells delineates cell types and serves as a prognostic marker in early stage breast cancer[J]. PLoS One, 2019, 14(5): e0217196.
[1] 金钰婷, 苑龙, 齐晓伟, 姜军. 乳腺癌非根治性手术临床研究证据[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 65-69.
[2] 李金泽, 彭雅琪, 刘月平, 马力. 乳腺癌HER-2低表达及超低表达临床研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 70-75.
[3] 肖锦怡, 周金妹, 王涛. 2024年乳腺癌全身系统治疗十大热点[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 76-83.
[4] 柴效科, 周海存, 杨涛, 卫翀羿, 魏赟, 张旭, 隆建萍. HER-2状态与AR/p53/Ki-67表达对三阴性乳腺癌新辅助化疗疗效及预后的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 84-91.
[5] 张国锋, 徐向升, 刘蕾, 张春, 孔蕾, 房立柱. 早期浸润性乳腺癌保留乳房患者的腋窝分期研究[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 92-96.
[6] 李昕宇, 李玉东, 刘强. 乳腺癌前哨淋巴结活组织检查的临床应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 108-112.
[7] 史福军, 魏巍, 林晓华, 廖玥, 郭志容. 单孔机器人辅助乳腺癌手术一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 125-127.
[8] 王昭雨, 姜军. 乳腺癌外科治疗理论和技术的发展与挑战[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 1-5.
[9] 张群, 李俊杰. 乳腺癌外科十大热点[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 6-11.
[10] 徐航程, 王佳玉. PI3K/AKT/mTOR 信号通路及其靶向治疗在乳腺癌中的应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 12-19.
[11] 方婉婷, 商家炜, 孟英爽, 闫婷, 明健. 一步核酸扩增在乳腺癌前哨淋巴结转移检测中的应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 20-26.
[12] 慕春燕, 杨大伟, 张云东, 崔兆清. E1A结合蛋白P300与乳腺癌发生发展的关系研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(02): 111-115.
[13] 苏明, 唐丹萍, 王萍, 何谦. 乳腺癌改良根治术后即刻乳房重建的方法选择研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 231-234.
[14] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[15] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
阅读次数
全文


摘要