[1] |
Caow W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791.
|
[2] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J].CA Cancer J Clin, 2021, 71(1): 7-33.
|
[3] |
Tudek A, Lloret-Llinares M, Jensen TH. The multitasking polyA tail:nuclear RNA maturation, degradation and export[J]. Philos Trans R Soc Lond B Biol Sci, 2018, 373(1762): 20180169.
|
[4] |
田路松, 赵晓航. 可变多聚腺苷酸化与肿瘤[J]. 生命科学, 2019,31(3): 232-240.
|
[5] |
Tian B, Manley JL. Alternative polyadenylation of mRNA precursors[J]. Nat Rev Mol Cell Biol, 2017, 18(1): 18-30.
|
[6] |
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease[J]. Cardiovasc Res, 2023, 119(6): 1324-35.
|
[7] |
Yuan F, Hankey W, Wagner EJ, et al. Alternative polyadenylation of mRNA and its role in cancer[J]. Genes Dis, 2021, 8(1): 61-72.
|
[8] |
徐海冬, 宁博林, 牟芳, 等. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15.
|
[9] |
Masamha CP,Wagner EJ.Thecontribution of alternative polyadenylation to the cancer phenotype[J]. Carcinogenesis, 2018, 39(1): 2-10.
|
[10] |
徐本锦,刘玲. 前体mRNA的选择性多聚腺苷酸化与人类疾病[J]. 生物化学与生物物理进展, 2020, 47(3): 199-209.
|
[11] |
Mohanan NK, Shaji F, Koshre GR, et al. Alternative polyadenylation:an enigma of transcript length variation in health and disease[J].Wiley Interdiscip Rev RNA, 2022, 13(1): e1692.
|
[12] |
Dharmalingam P, Mahalingam R, Yalamanchili HK, et al. Emerging roles of alternative cleavage and polyadenylation (APA) in human disease[J]. J Cell Physiol, 2022, 237(1): 149-60.
|
[13] |
Ren F, Zhang N, Zhang L, et al. Alternative Polyadenylation: a new frontier in post transcriptional regulation[J]. Biomark Res, 2020,8(1): 67.
|
[14] |
Guo S, Lin S. mRNA alternative polyadenylation (APA) in regulation of gene expression and diseases[J]. Genes Dis, 2023, 10(1): 165-174.
|
[15] |
Singh I, Lee SH, Sperling AS, et al. Widespread intronic polyadenylation diversifies immune cell transcriptomes[J]. Nat Commun, 2018, 9(1): 1716.
|
[16] |
Tian B, Pan Z, Lee JY. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing[J]. Genome Res, 2007, 17(2): 156-165.
|
[17] |
Elkon R, Drost J, Van Haaften G, et al. E2F mediates enhanced alternative polyadenylation in proliferation[J]. Genome Biol, 2012, 13(7): R59.
|
[18] |
Turner RE, Henneken LM, Liem-Weits M, et al. Requirement for cleavage factor II(m) in the control of alternative polyadenylation in breast cancer cells[J]. RNA, 2020, 26(8): 969-981.
|
[19] |
Zhong J, Cao RX, Hong T, et al. Identification and expression analysis of a novel transcript of the human PRMT2 gene resulted from alternative polyadenylation in breast cancer[J]. Gene, 2011, 487(1): 1-9.
|
[20] |
Ni TK, Kuperwasser C. Premature polyadenylation of MAGI3 produces a dominantly-acting oncogene in human breast cancer[J]. Elife, 2016,5: e14730.
|
[21] |
Pereira-Castro I, Moreira A. On the function and relevance of alternative 3’-UTRs in gene expression regulation[J]. Wiley Interdiscip Rev RNA, 2021, 12(5): e1653.
|
[22] |
Xia Z, Donehower LA, Cooper TA, et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3’-UTR landscape across seven tumour types[J]. Nat Commun, 2014, 5: 5274.
|
[23] |
Wang X, Li M, Yin Y, et al. Profiling of alternative polyadenylation sites in luminal B breast cancer using the SAPAS method[J]. Int J Mol Med, 2015, 35(1): 39-50.
|
[24] |
Wang L, Hu X, Wang P, et al. Integrative 3’ untranslated regionbased model to identify patients with low risk of axillary lymph node metastasis in operable triple-negative breast cancer[J]. Oncologist,2019, 24(1): 22-30.
|
[25] |
Akman HB, Oyken M, Tuncer T, et al. 3’UTR shortening and EGF signaling: implications for breast cancer[J]. Hum Mol Genet, 2015,24(24): 6910-6920.
|
[26] |
Mayr C, Bartel DP. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells[J].Cell, 2009, 138(4): 673-684.
|
[27] |
Gillen AE, Brechbuhl HM, Yamamoto TM, et al. Alternative polyadenylation of PRELID1 regulates mitochondrial ROS signaling and cancer outcomes[J]. Mol Cancer Res, 2017, 15(12): 1741-1751.
|
[28] |
Yan H, Tian R, Wang W, et al. Aberrant Ki-67 expression through 3’UTR alternative polyadenylation in breast cancers[J]. FEBS Open Bio, 2018, 8(3): 332-338.
|
[29] |
Guo Q, Wang H, Duan J, et al. An alternatively spliced p62 isoform confers resistance to chemotherapy in breast cancer[J]. Cancer Res,2022, 82(21): 4001-4015.
|
[30] |
Tan S, Ding K, Chong QY, et al. Post-transcriptional regulation of ERBB2 by miR26a/b and HuR confers resistance to tamoxifen in estrogen receptor-positive breast cancer cells[J]. J Biol Chem, 2017,292(33): 13551-13564.
|
[31] |
Miles WO, Lembo A, Volorio A, et al. Alternative polyadenylation in triple-negative breast tumors allows NRAS and c-JUN to bypass PUMILIO posttranscriptional regulation[J]. Cancer Res, 2016,76(24): 7231-7241.
|
[32] |
Matoulkova E, Sommerova L, Pastorek M, et al. Regulation of AGR2 expression via 3’UTR shortening[J]. Exp Cell Res, 2017, 356(1):40-47.
|
[33] |
Akman BH, Can T, Erson-Bensan AE. Estrogen-induced upregulation and 3’-UTR shortening of CDC6[J]. Nucleic Acids Res, 2012,40(21): 10679-10688.
|
[34] |
Park HJ, Ji P, Kim S, et al. 3’ UTR shortening represses tumorsuppressor genes in trans by disrupting ceRNA crosstalk[J]. Nat Genet, 2018, 50(6): 783-789.
|
[35] |
Jafari Najaf Abadi MH, Shafabakhsh R, Asemi Z, et al. CFIm25 and alternative polyadenylation: conflicting roles in cancer[J]. Cancer Lett, 2019, 459: 112-121.
|
[36] |
Xiao S, Gu H, Deng L, et al. Relationship between NUDT21 mediated alternative polyadenylation process and tumor[J]. Front Oncol, 2023,13: 1052012.
|
[37] |
Ge Y, Huang J, Chen R, et al. Downregulation of CPSF6 Leads to global mRNA 3’ UTR shortening and enhanced antiviral immune responses[J]. PLoS Pathog, 2024, 20(2): e1012061.
|
[38] |
Brumbaugh J, Di Stefano B, Wang X, et al. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling[J].Cell, 2018, 172(3): 629-631.
|
[39] |
Wang BJ, Liu DC, Guo QY, et al. NUDT21 suppresses breast cancer tumorigenesis through regulating CPSF6 expression[J]. Cancer Manag Res, 2020, 12: 3069-3078.
|
[40] |
Tamaddon M, Shokri G, Hosseini Rad SMA, et al. Involved microRNAs in alternative polyadenylation intervene in breast cancer via regulation of cleavage factor “CFIm25”[J]. Sci Rep, 2020, 10(1):11608.
|
[41] |
Binothman N, Hachim IY, Lebrun JJ, et al. CPSF6 is a clinically relevant breast cancer vulnerability target: role of CPSF6 in breast cancer[J]. EBioMedicine, 2017, 21: 65-78.
|
[42] |
Dharmalingam P, Mahalingam R, Yalamanchili HK, et al. Emerging roles of alternative cleavage and polyadenylation (APA) in human disease[J]. J Cell Physiol, 2022, 237(1): 149-160.
|
[43] |
Gruber AJ, Schmidt R, Gruber AR, et al. A comprehensive analysis of 3’ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation[J]. Genome Res, 2016, 26(8): 1145-1159.
|
[44] |
Mo L, Meng L, Huang Z, et al. An analysis of the role of HnRNP C dysregulation in cancers[J]. Biomark Res, 2022, 10(1): 19.
|
[45] |
Wu Y, Zhao W, Liu Y, et al. Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response[J]. EMBO J, 2018, 37(23): e99017.
|
[46] |
Lv W, Tan Y, Xiong M, et al. Analysis and validation of m6A regulatory network: a novel circBACH2/has-miR-944/HNRNPC axis in breast cancer progression[J]. J Transl Med, 2021, 19(1): 527.
|
[47] |
Li W, Li W, Laishram RS, et al. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases[J]. Nucleic Acids Res, 2017, 45(15): 8930-8942.
|
[48] |
Komini C, Theohari I, Lambrianidou A, et al. PAPOLA contributes to cyclin D1 mRNA alternative polyadenylation and promotes breast cancer cell proliferation[J]. J Cell Sci, 2021, 134(7): jcs252304.
|
[49] |
Nagaoka K, Fujii K, Zhang H, et al. CPEB1 mediates epithelial-tomesenchyme transition and breast cancer metastasis[J]. Oncogene,2016, 35(22): 2893-2901.
|
[50] |
Sovijit W, Sovijit W, Ishii Y, et al. Estrogen promotes increased breast cancer cell proliferation and migration through downregulation of CPEB1 expression[J]. Biochem Biophys Res Commun, 2021, 534: 871-876.
|
[51] |
Lu XX, Yang WX, Pei YC, et al. An in vivo CRISPR screen identifies that SNRPC promotes triple-negative breast cancer progression[J]. Cancer Res, 2023, 83(12): 2000-2015.
|
[52] |
Ding J, Su Y, Liu Y, et al. The role of CSTF2 in cancer: from technology to clinical application[J]. Cell Cycle, 2023, 22(23-24):2622-2636.
|
[53] |
Mbita Z, Hull R, Mbele M, et al. Expression analysis of RbBP6 in human cancers: a prospective biomarker[J]. Anticancer Drugs, 2019,30(8): 767-773.
|
[54] |
Motadi LR, Lekganyane MM, Moela P. RBBP6 expressional effects on cell proliferation and apoptosis in breast cancer cell lines with distinct p53 statuses[J]. Cancer Manag Res, 2018, 10: 3357-3369.
|
[55] |
Di Giammartino DC, Li W, Ogami K, et al. RBBP6 isoforms regulate the human polyadenylation machinery and modulate expression of mRNAs with AU-rich 3’ UTRs[J]. Genes Dev, 2014, 28(20):2248-2260.
|
[56] |
Wang L, Lang GT, Xue MZ, et al. Dissecting the heterogeneity of the alternative polyadenylation profiles in triple-negative breast cancers[J].Theranostics, 2020, 10(23): 10531-10547.
|
[57] |
Xiang Y, Ye Y, Lou Y, et al. Comprehensive characterization of alternative polyadenylation in human cancer[J]. J Natl Cancer Inst,2018, 110(4): 379-389.
|
[58] |
Kim N, Chung W, Eum HH, et al. Alternative polyadenylation of single cells delineates cell types and serves as a prognostic marker in early stage breast cancer[J]. PLoS One, 2019, 14(5): e0217196.
|