切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 380 -384. doi: 10.3877/cma.j.issn.1674-0807.2022.06.009

综述

多聚腺苷二磷酸核糖聚合酶抑制剂在乳腺癌治疗中的研究进展
章国智1, 屈蔓1, 张毅1,()   
  1. 1. 400038 重庆,陆军军医大学第一附属医院乳腺甲状腺外科
  • 收稿日期:2022-01-10 出版日期:2022-12-01
  • 通信作者: 张毅

Polyadenosine diphosphate ribose polymerase inhibitors in breast cancer treatment

Guozhi Zhang1, Man Qu1, Yi Zhang1()   

  • Received:2022-01-10 Published:2022-12-01
  • Corresponding author: Yi Zhang
引用本文:

章国智, 屈蔓, 张毅. 多聚腺苷二磷酸核糖聚合酶抑制剂在乳腺癌治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2022, 16(06): 380-384.

Guozhi Zhang, Man Qu, Yi Zhang. Polyadenosine diphosphate ribose polymerase inhibitors in breast cancer treatment[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(06): 380-384.

散发性乳腺癌患者中,至少5%患者能检测到BRCA1/2基因突变,这些基因参与编码DNA同源重组修复中的关键蛋白,其功能丧失会增加患乳腺癌风险。BRCA1/2基因突变携带者乳腺癌发生风险可增加至70%,同时BRCA1/2基因突变乳腺癌患者具有发病年轻化、高侵袭性、易复发、易转移等特征。多腺苷二磷酸核糖聚合酶(PARP)抑制剂的发现,为针对BRCA1/2基因突变的乳腺癌患者提供了新的治疗策略。笔者对时下热点的PARP抑制剂在乳腺癌治疗领域中的作用机制以及乳腺癌新辅助治疗、辅助治疗及解救治疗中相关临床研究进展进行综述。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin202171(3):209-249.
[2]
Rizzolo P, Silvestri V, Falchetti M, et al. Inherited and acquired alterations in development of breast cancer [J]. Appl Clin Genet, 2011, 4: 145-158.
[3]
Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction [J]. Cancer, 1994, 73(3): 643-651.
[4]
Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer[J]. Lancet, 1997, 350(9084): 1047-1059.
[5]
Lewin R, Sulkes A, Shochat T, et al. Oncotype-dx recurrence score distribution in breast cancer patients with BRCA1/2 mutations [J]. Breast Cancer Res Treat, 2016, 157(3): 511-516.
[6]
Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers [J]. JAMA, 2017, 317(23): 2402-2016.
[7]
Couch FJ, Hart SN, Sharma P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer [J]. J Clin Oncol, 2015, 33(4): 304-311.
[8]
Aleskandarany M, Caracappa D, Nolan CC, et al. DNA damage response markers are differentially expressed in BRCA-mutated breast cancers [J]. Breast Cancer Res Treat, 2015, 150(1): 81-90.
[9]
Cardoso F, Senkus E, Costa A, et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4)[J]. Ann Oncol, 2018, 29(8): 1634-1657.
[10]
Dent R, Valentini A, Hanna W, et al. Factors associated with breast cancer mortality after local recurrence [J]. Curr Oncol, 2014, 21(3): e418-e425.
[11]
D’Andrea AD. Mechanisms of PARP inhibitor sensitivity and resistance [J]. DNA Repair (Amst), 2018, 71: 172-176.
[12]
Majidinia M, Yousefi B. DNA damage response regulation by microRNAs as a therapeutic target in cancer [J]. DNA Repair (Amst), 2016, 47: 1-11.
[13]
Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage [J]. Nature, 2005, 434(7033): 605-611.
[14]
Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective [J]. Nature, 2000, 408(6811): 433-439.
[15]
Solyom S, Aressy B, Pylkäs K, et al. Breast cancer-associated abraxas mutation disrupts nuclear localization and DNA damage response functions [J]. Sci Transl Med, 2012, 4(122): 122ra23.
[16]
Muñoz-Galván S, López-Saavedra A, Jackson SP, et al. Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination [J]. Nucleic Acids Res, 2013, 41(3): 1669-1683.
[17]
Aymard F, Bugler B, Schmidt CK, et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks [J]. Nat Struct Mol Biol, 2014, 21(4): 366-374.
[18]
Kato M, Yano K, Matsuo F, et al. Identification of rad51 alteration in patients with bilateral breast cancer [J]. J Hum Genet, 2000, 45(3): 133-137.
[19]
Maacke H, Opitz S, Jost K, et al. Over-expression of wild-type rad51 correlates with histological grading of invasive ductal breast cancer [J]. Int J Cancer, 2000, 88(6): 907-913.
[20]
Gasparini P, Lovat F, Fassan M, et al. Protective role of mir-155 in breast cancer through rad51 targeting impairs homologous recombination after irradiation [J]. Proc Natl Acad Sci U S A, 2014, 111(12): 4536-4541.
[21]
Yousefi B, Samadi N, Baradaran B, et al. Peroxisome proliferator-activated receptor ligands and their role in chronic myeloid leukemia: therapeutic strategies [J]. Chem Biol Drug Des, 2016, 88(1): 17-25.
[22]
Thomas G, Jacobs KB, Kraft P, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (rad51l1) [J]. Nat Genet, 2009, 41(5): 579-584.
[23]
Fu YP, Yu JC, Cheng TC, et al. Breast cancer risk associated with genotypic polymorphism of the nonhomologous end-joining genes: a multigenic study on cancer susceptibility [J]. Cancer Res, 2003, 63(10): 2440-2446.
[24]
Kuschel B, Auranen A, McBride S, et al. Variants in DNA double-strand break repair genes and breast cancer susceptibility [J]. Hum Mol Genet, 2002, 11(12): 1399-1407.
[25]
Willems P, Claes K, Baeyens A, et al. Polymorphisms in nonhomologous end-joining genes associated with breast cancer risk and chromosomal radiosensitivity [J]. Genes Chromosomes Cancer, 2008, 47(2): 137-148.
[26]
Ming-Shiean H, Yu JC, Wang HW, et al. Synergistic effects of polymorphisms in DNA repair genes and endogenous estrogen exposure on female breast cancer risk [J]. Ann Surg Oncol, 2010, 17(3): 760-771.
[27]
Latimer JJ, Johnson JM, Kelly CM, et al. Nucleotide excision repair deficiency is intrinsic in sporadic stage I breast cancer [J]. Proc Natl Acad Sci U S A, 2010, 107(50): 21 725-21 730.
[28]
Moinfar F, Beham A, Friedrich G, et al. Macro-environment of breast carcinoma: frequent genetic alterations in the normal appearing skins of patients with breast cancer [J]. Mod Pathol, 2008, 21(5): 639-646.
[29]
O’Donovan PJ, Livingston DM. BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair [J]. Carcinogenesis, 2010, 31(6): 961-967.
[30]
Fridlich R, Annamalai D, Roy R, et al. BRCA1 and BRCA2 protect against oxidative DNA damage converted into double-strand breaks during DNA replication [J]. DNA Repair (Amst), 2015, 30: 11-20.
[31]
Antoniou AC, Pharoah PD, McMullan G, et al. A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes [J]. Br J Cancer, 2002, 86(1): 76-83.
[32]
Swift M, Reitnauer PJ, Morrell D, et al. Breast and other cancers in families with ataxia-telangiectasia [J]. N Engl J Med, 1987, 316(21): 1289-1294.
[33]
O’Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer [J]. Nat Rev Genet, 2017, 18(10): 613-623.
[34]
Turk AA, Wisinski KB. PARP inhibitors in breast cancer: bringing synthetic lethality to the bedside [J]. Cancer, 2018, 124(12): 2498-2506.
[35]
Kraus M, Alimzhanov MB, Rajewsky N, et al. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer [J]. Cell, 2004, 117(6): 787-800.
[36]
Chambon P, Weill JD, Mandel P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme [J]. Biochem Biophys Res Commun, 1963, 11: 39-43.
[37]
Slade D. PARP and PARG inhibitors in cancer treatment [J]. Genes Dev, 2020, 34(5-6): 360-394.
[38]
Amé JC, Rolli V, Schreiber V, et al. PARP-2, a novel mammalian DNA damage-dependent poly(adp-ribose) polymerase [J]. J Biol Chem, 1999, 274(25): 17 860-17 868.
[39]
Ménissier de Murcia J, Ricoul M, Tartier L, et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse [J]. EMBO J, 2003, 22(9): 2255-2263.
[40]
Schreiber V, Amé JC, Dollé P, et al. Poly(adp-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1 [J]. J Biol Chem, 2002, 277(25): 23 028-23 036.
[41]
Bryant HE, Petermann E, Schultz N, et al. PARP is activated at stalled forks to mediate mre11-dependent replication restart and recombination [J]. EMBO J, 2009, 28(17): 2601-2615.
[42]
Murai J, Huang SY, Renaud A, et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib [J]. Mol Cancer Ther, 2014, 13(2): 433-443.
[43]
Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair [J]. J Clin Oncol, 2008, 26(22): 3785-3790.
[44]
Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(adp-ribose) polymerase [J]. Nature, 2005, 434(7035): 913-917.
[45]
Rottenberg S, Jaspers JE, Kersbergen A, et al. High sensitivity of BRCA1- deficient mammary tumors to the PARP inhibitor AZD 2281 alone and in combination with platinum drugs [J]. Proc Natl Acad Sci U S A, 2008, 105(44): 17 079-17 084.
[46]
Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation [J]. N Eng J Med, 2017, 377(6): 523-533.
[47]
Gelmon KA, Fasching PA, Couch FJ, et al. Clinical effectiveness of olaparib monotherapy in germline BRCA-mutated, HER2-negative metastatic breast cancer in a real-world setting: phase IIIb LUCY interim analysis[J]. Eur J Cancer2021152:68-77.
[48]
Turner NC, Telli ML, Rugo HS, et al. A phase II study of talazoparib after platinum or cytotoxic nonplatinum regimens in patients with advanced breast cancer and germline BRCA1/2 mutations (abrazo) [J]. Clin Cancer Res, 2019, 25(9): 2717-2724.
[49]
Hoy SM. Talazoparib: first global approval [J]. Drugs, 2018, 78(18): 1939-1946.
[50]
Mirza MR, Monk BJ, Herrstedt J, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer [J]. N Engl J Med, 2016, 375(22): 2154-2164.
[51]
Lorusso D, Guy H, Samyshkin Y, et al. Feasibility study of a network meta-analysis and unanchored population-adjusted indirect treatment comparison of niraparib, olaparib, and bevacizumab as maintenance therapies in patients with newly diagnosed advanced ovarian cancer [J]. Cancers (Basel), 2022, 14(5):1285.
[52]
Keung MYT, Wu Y, Vadgama JV. PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers [J]. J Clin Med, 2019, 8(4):435.
[53]
Patsouris A, Diop K, Tredan O, et al. Rucaparib in patients presenting a metastatic breast cancer with homologous recombination deficiency, without germline BRCA1/2 mutation [J]. Eur J Cancer, 2021, 159: 283-295.
[54]
Murai J, Huang SY, Das BB, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors [J]. Cancer Res, 2012, 72(21): 5588-5599.
[55]
Hopkins TA, Shi Y, Rodriguez LE, et al. Mechanistic dissection of PARP1 trapping and the impact on in vivo tolerability and efficacy of PARP inhibitors [J]. Mol Cancer Res, 2015, 13(11): 1465-1477.
[56]
Han HS, Diéras V, Robson M, et al. Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patients with BRCA1/2 locally recurrent/metastatic breast cancer: randomized phase II study [J]. Ann Oncol, 2018, 29(1): 154-161.
[57]
Loibl S, O’Shaughnessy J, Untch M, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (brightness): a randomised, phase 3 trial [J]. Lancet Oncol, 2018, 19(4): 497-509.
[58]
Fasching PA, Link T, Hauke J, et al. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (geparola study) [J]. Ann Oncol, 2021, 32(1): 49-57.
[59]
Litton JK, Scoggins ME, Hess KR, et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant [J]. J Clin Oncol, 2020, 38(5): 388-394.
[60]
Guney Eskiler G. Talazoparib to treat BRCA-positive breast cancer [J]. Drugs Today (Barc), 2019, 55(7): 459-467.
[61]
Kalra M, Tong Y, Jones DR, et al. Cisplatin +/- rucaparib after preoperative chemotherapy in patients with triple-negative or BRCA mutated breast cancer [J]. NPJ Breast Cancer, 2021, 7(1): 29.
[62]
Tutt ANJ, Garber JE, Kaufman B, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer [J]. N Engl J Med, 2021, 384(25): 2394-2405.
[63]
Rugo HS, Olopade OI, DeMichele A, et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer [J]. N Engl J Med, 2016, 375(1): 23-34.
[64]
Litton JK, Hurvitz SA, Mina LA, et al. Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: final overall survival results from the embraca trial [J]. Ann Oncol, 2020, 31(11): 1526-1535.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要