切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 370 -375. doi: 10.3877/cma.j.issn.1674-0807.2022.06.007

综述

三阴性乳腺癌的新辅助免疫治疗
张曦1, 张亚男2,(), 胡浩霖2, 吕建鑫2, 王宝偲2, 曹欣华2, 韩丽飞2   
  1. 1. 210009 南京,东南大学医学院外科医学系
    2. 210009 南京,东南大学附属中大医院普外科
  • 收稿日期:2021-03-19 出版日期:2022-12-01
  • 通信作者: 张亚男

Neoadjuvant immunotherapy for triple negative breast cancer

Xi Zhang1, Yanan Zhang2(), Haolin Hu2   

  • Received:2021-03-19 Published:2022-12-01
  • Corresponding author: Yanan Zhang
引用本文:

张曦, 张亚男, 胡浩霖, 吕建鑫, 王宝偲, 曹欣华, 韩丽飞. 三阴性乳腺癌的新辅助免疫治疗[J]. 中华乳腺病杂志(电子版), 2022, 16(06): 370-375.

Xi Zhang, Yanan Zhang, Haolin Hu. Neoadjuvant immunotherapy for triple negative breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(06): 370-375.

三阴性乳腺癌缺乏有效作用靶点,预后差。近年来免疫疗法的发展为三阴性乳腺癌患者提供了新的治疗选择,但免疫疗法在新辅助环境下的作用尚有争议。本文介绍了新辅助免疫治疗的原理,梳理了三阴性乳腺癌新辅助免疫治疗相关的重要临床前研究及临床研究,分析了免疫疗法在不同治疗方案中的结果,并对新辅助免疫治疗的应用潜力和相关风险进行总结。

表1 三阴性乳腺癌新辅助治疗中免疫疗法联合化疗的临床研究
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
Lebert JM, Lester R, Powell E, et al. Advances in the systemic treatment of triple-negative breast cancer [J]. Curr Oncol, 2018, 25(1): 142-150.
[3]
Elghazaly H, Rugo HS, Azim HA, et al. Breast-gynaecological & immuno-oncology international cancer conference (BGICC) consensus and recommendations for the management of triple-negative breast cancer [J]. Cancers (Basel), 2021, 13(9): 2262.
[4]
Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial [J]. Lancet, 2020, 396(10265): 1817-1828.
[5]
Perez-Garcia J, Soberino J, Racca F, et al. Atezolizumab in the treatment of metastatic triple-negative breast cancer [J]. Expert Opin Biol Ther, 2020, 20(9): 981-989.
[6]
Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer [J]. N Engl J Med, 2020, 382(9): 810-821.
[7]
Gianni L, Huang CS, Egle D, et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study [J]. Ann Oncol, 2022, 33(5):534-543.
[8]
Jiang YZ, Ma D, Suo C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies [J]. Cancer Cell, 201935(3):428-440.
[9]
Wu Y, Chen W, Xu ZP, et al. PD-L1 distribution and perspective for cancer immunotherapy-blockade, knockdown, or inhibition [J]. Front Immunol, 2019, 10:2022.
[10]
Seto T, Sam D, Pan M. Mechanisms of primary and secondary resistance to immune checkpoint inhibitors in cancer [J]. Med Sci (Basel), 2019, 7(2): 14.
[11]
Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy [J]. Lancet Oncol, 2018, 19(1): 40-50.
[12]
Polonia A, Pinto R, Cameselle-Teijeiro JF, et al. Prognostic value of stromal tumour infiltrating lymphocytes and programmed cell death-ligand 1 expression in breast cancer [J]. J Clin Pathol, 2017, 70(10): 860-867.
[13]
Szekely B, Bossuyt V, Li X, et al. Immunological differences between primary and metastatic breast cancer [J]. Ann Oncol, 2018, 29(11): 2232-2239.
[14]
Zitvogel L, Galluzzi L, Smyth MJ, et al. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance [J]. Immunity, 2013, 39(1): 74-88.
[15]
Fournier C, Vargas TR, Martin T, et al. Immunotherapeutic properties of chemotherapy [J]. Curr Opin Pharmacol, 2017, 35: 83-88.
[16]
Liu J, Blake SJ, Yong MC, et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease [J]. Cancer Discov, 2016, 6(12): 1382-1399.
[17]
Hutchinson KE, Yost SE, Chang CW, et al. Comprehensive profiling of poor-risk paired primary and recurrent triple-negative breast cancers reveals immune phenotype shifts [J]. Clin Cancer Res202026(3):657-668.
[18]
Bourgeois-Daigneault MC, Roy DG, Aitken AS, et al. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy [J]. Sci Transl Med, 2018, 10(422): eaao1641.
[19]
Brockwell NK, Owen KL, Zanker D, et al. Neoadjuvant interferons: critical for effective PD-1-based immunotherapy in TNBC [J]. Cancer Immunol Res, 2017, 5(10): 871-884.
[20]
Dirix LY, Takacs I, Jerusalem G, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study [J]. Breast Cancer Res Treat, 2018, 167(3): 671-686.
[21]
Emens LA, Cruz C, Eder JP, et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer a phase 1 study [J]. JAMA Oncol, 2019, 5(1): 74-82.
[22]
Cortes J, Lipatov O, Im SA, et al. KEYNOTE-119: Phase Ⅲ study of pembrolizumab (pembro) versus single-agent chemotherapy (chemo) for metastatic triple negative breast cancer (mTNBC) [J]. Ann Oncol, 2019, 30:859.
[23]
Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer [J]. N Engl J Med, 2018, 379(22): 2108-2121.
[24]
Schmid P, Salgado R, Park YH, et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study [J]. Ann Oncol, 2020, 31(5): 569-581.
[25]
Nanda R, Liu MC, Yau C, et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial [J]. JAMA Oncol, 2020, 6(5): 676-684.
[26]
Loibl S, Untch M, Burchardi N, et al. A randomised phase Ⅱ study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study [J]. Ann Oncol, 2019, 30(8): 1279-1288.
[27]
Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial [J]. Lancet, 2020, 396(10257): 1090-1100.
[28]
Foldi J, Silber A, Reisenbichler E, et al. Neoadjuvant durvalumab plus weekly nab-paclitaxel and dose-dense doxorubicin/cyclophosphamide in triple-negative breast cancer [J]. NPJ Breast Cancer, 2021, 7(1): 9.
[29]
Nahleh ZA, Barlow WE, Hayes DF, et al. SWOG S0800 (NCI CDR0000636131): addition of bevacizumab to neoadjuvant nab-paclitaxel with dose-dense doxorubicin and cyclophosphamide improves pathologic complete response (pCR) rates in inflammatory or locally advanced breast cancer [J]. Breast Cancer Res Treat, 2016, 158(3): 485-495.
[30]
Geyer CE, Loibl S, Rastogi P, et al. NSABP B-59/GBG 96-GeparDouze: A randomized double-blind phase Ⅲ clinical trial of neoadjuvant chemotherapy (NAC) with atezolizumab or placebo in Patients (pts) with triple negative breast cancer (TNBC) followed by adjuvant atezolizumab or placebo [J]. J Clin Oncol, 2018, 36(15_suppl): TPS603-TPS603.
[31]
Domchek SM, Postel-Vinay S, Im SA, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study [J]. Lancet Oncol, 2020, 21(9): 1155-1164.
[32]
Quintela-Fandino M, Holgado E, Manso L, et al. Immuno-priming durvalumab with bevacizumab in HER2-negative advanced breast cancer: a pilot clinical trial [J]. Breast Cancer Res, 2020, 22(1): 124.
[33]
Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer [J]. Ann Oncol, 2019, 30(7): 1051-1060.
[34]
Oliveira M, Saura C, Nuciforo P, et al. FAIRLANE, a double-blind placebo-controlled randomized phase Ⅱ trial of neoadjuvant ipatasertib plus paclitaxel for early triple-negative breast cancer [J]. Ann Oncol, 2019, 30(8): 1289-1297.
[35]
Brockwell NK, Parker BS. Tumor inherent interferons: Impact on immune reactivity and immunotherapy [J]. Cytokine, 2019, 118: 42-47.
[36]
McLaughlin M, Patin EC, Pedersen M, et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy [J]. Nat Rev Cancer, 2020, 20(4): 203-217.
[37]
Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity [J]. Nat Commun, 2017, 8: 15 618.
[38]
Voorwerk L, Slagter M, Horlings HM, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial [J]. Nat Med, 2019, 25(6): 920-928.
[39]
Aguilera TA, Elghonaimy EA, Shehade H, et al. Induced tumor heterogeneity reveals factors informing radiation and immunotherapy combinations [J]. Clin Cancer Res, 2020, 26(12): 2972-2985.
[40]
Rahimi A, Thomas K, Spangler A, et al. Preliminary results of a phase 1 dose-escalation trial for early-stage breast cancer using 5-fraction stereotactic body radiation therapy for partial-breast irradiation [J]. Int J Radiat Oncol, 2017, 98(1): 196.
[41]
Takada M, Toi M. Cryosurgery for primary breast cancers, its biological impact, and clinical outcomes [J]. Int J Clin Oncol, 2019, 24(6): 608-613.
[42]
McArthur HL, Diab A, Page DB, et al. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling [J]. Clin Cancer Res, 2016, 22(23): 5729-5737.
[43]
Chen J, Qian W, Mu F, et al. The future of cryoablation: An abscopal effect [J]. Cryobiology, 2020, 97: 1-4.
[44]
Sikov WM, Berry DA, Perou CM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage Ⅱ to Ⅲ triple-negative breast cancer: CALGB 40603 (Alliance) [J]. J Clin Oncol, 2015, 33(1): 13-21.
[45]
Schmid P, Cortes J, Dent R, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer [J]. N Engl J Med, 2022, 386(6):556-567.
[46]
Shah M, Osgood CL, Amatya AK, et al. FDA approval summary: pembrolizumab for neoadjuvant and adjuvant treatment of patients with high-risk early-stage triple negative breast cancer [J]. Clin Cancer Res, 202228(24):5249-5253.
[47]
Masuda N, Lee SJ, Ohtani S, et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy [J]. N Engl J Med, 2017, 376(22): 2147-2159.
[48]
Pandy JGP, Balolong-Garcia JC, Cruz-Ordinario MVB, et al. Triple negative breast cancer and platinum-based systemic treatment: a meta-analysis and systematic review [J]. BMC Cancer, 2019, 19(1): 1065.
[49]
Lynce F, Nunes R. Role of platinums in triple-negative breast cancer [J]. Curr Oncol Rep, 2021, 23(5): 50.
[50]
Miles D, Gligorov J, Andre F, et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase Ⅲ trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer [J]. Ann Oncol, 2021, 32(8):994-1004.
[51]
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J]. Lancet, 2014, 384(9938): 164-172.
[52]
Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy [J]. Lancet Oncol2018, 19(1): 40-50.
[53]
Barroso-Sousa R, Jain E, Cohen O, et al. Prevalence and mutational determinants of high tumor mutation burden in breast cancer [J]. Ann Oncol, 2020, 31(3): 387-394.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[13] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[14] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要