切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 307 -314. doi: 10.3877/cma.j.issn.1674-0807.2022.05.008

综述

乳腺癌多基因检测研究进展
李英子1, 廖宁2,()   
  1. 1. 515000 汕头市中心医院乳腺疾病诊疗中心
    2. 510080 广州,广东省人民医院乳腺科
  • 收稿日期:2020-08-27 出版日期:2022-10-01
  • 通信作者: 廖宁

Multigene assay for breast cancer

Yingzi Li1, Ning Liao2()   

  • Received:2020-08-27 Published:2022-10-01
  • Corresponding author: Ning Liao
引用本文:

李英子, 廖宁. 乳腺癌多基因检测研究进展[J/OL]. 中华乳腺病杂志(电子版), 2022, 16(05): 307-314.

Yingzi Li, Ning Liao. Multigene assay for breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(05): 307-314.

乳腺癌多基因检测技术对早期乳腺癌患者的预后判断和指导患者术后辅助治疗方案有着重要的参考价值。乳腺癌多基因检测可评估早期乳腺癌患者的复发风险,帮助判断患者预后,预测药物疗效并指导个体化治疗。每种多基因检测有不同的评判标准,通过将患者划分为各个风险组来评估预后,决定治疗策略。笔者针对目前常用的多基因检测技术,包括21基因检测(Oncotype DX)、70基因检测(MammaPrint)、50基因复发风险评分系统(PAM50)、EndoPredict(EPclin)、乳腺癌复发指数(BCI)在乳腺癌中的应用与研究进行综述。

图1 21基因检测原理示意图 注:RT-PCR为反转录聚合酶链反应;RS为复发评分;HER-2为人表皮生长因子受体2
图2 MINDACT临床试验研究方案
表1 不同指南对激素受体阳性、HER-2阴性乳腺癌患者采用多基因检测工具的推荐
表2 不同多基因检测方法的特点
多基因检测 首次验证年份 相关基因 检测样本类型 检测方法 基因组评分 风险分级 适用患者条件 预后验证结果 预测结果
21基因检测 2004[2] 21个基因 FFPE组织 RT-PCR RS评分为0~100分 低风险<18分;中风险为18~30分;高风险>30分 浸润性乳腺癌,pT1-2N0-1,ER阳性/ HER-2阴性 高风险患者10年远处复发高于低风险患者 高风险和中风险患者(RS>25分)更可能从化疗获益;低风险患者化疗获益小[8,10]
70基因检测 2002[17] 70个基因 冰冻组织 DNA微阵列 基因风险评分:高风险;低风险 低;高 浸润性乳腺癌,年龄< 55岁,pT1-2N0-1 高基因复发风险组5年远处转移较低基因复发风险组高 高临床复发风险与低基因复发风险相结合,确定了5年远处复发风险不超过7.5%的异质性患者组。该组化疗获益为1.5%[20]
50基因复发风险评分 2009[28] 58个基因 FFPE组织 Nanostring数字化基因检测 ROR评分为0~100分,分类在亚型 低风险:0~40分;中风险:41~60分;高风险:61~100分 浸润性乳腺癌,绝经后,pT1-2N0或pT2N1,ER阳性,化疗+内分泌治疗 低ROR的luminal A型亚群10年远处复发率低
Endopredict 2011[38] 12个基因 FFPE组织 RT-PCR EPClin评分为0~15分 低风险≤3.328 7分;高风险>3.328 7分 浸润性乳腺癌,绝经后,pT1-2N0-1,ER阳性/HER-2阴性 低EPclin评分患者比高EPclin评分患者的10年远处复发率小7倍(4%比28%)
乳腺癌复发指数 2008[46] 7个基因 FFPE组织 RT-PCR 复发风险评分为0~10分 低风险:0~5分;高风险:5.1~10分 浸润性乳腺癌,pT1-3N0,ER阳性/HER-2阴性,化疗+内分泌治疗 高风险提示10年远处复发率高
[1]
Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging[J]. CA Cancer J Clin, 2017, 67(2):93-99.
[2]
Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node negative breast cancer[J]. N Engl J Med, 2004, 351(27):2817-2826.
[3]
Kathy S, Albain W, Shak S, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial[J]. Lancet Oncol, 2010, 11(1):55-65.
[4]
Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer[J]. J Clin Oncol, 2006, 24(23):3726-3734.
[5]
Goldstein LJ, Gray R, Badve S, et al. Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features[J]. J Clin Oncol, 2008, 26(25):4063-4071.
[6]
Eleftherios P. Mamounas GT, Fisher B, et al. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer-results from NSABP B-14 and NSABP B-20[J]. J Clin Oncol, 28(10):1677-1683.
[7]
Dowsett M, Cuzick J, Wale C, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study[J]. J Clin Oncol, 2010, 28(11):1829-1834.
[8]
Sparano JA, Gray RJ, Makower DF, et al. Prospective validation of a 21-gene expression assay in breast cancer[J]. N Engl J Med, 2015, 373(21):2005-2014.
[9]
Sparano JA, Gray RJ, Makower DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer[J]. N Engl J Med, 2018, 379(2):111-121.
[10]
Sparano JA, Gray RJ, Ravdin PM, et al. Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer[J]. N Engl J Med, 2019, 380(25):2395-2405.
[11]
Weiser R, Haque W, Polychronopoulou E, et al. The 21-gene recurrence score in node-positive, hormone receptor-positive, HER2-negative breast cancer: a cautionary tale from an NCDB analysis[J]. Breast Cancer Res Treat, 2021185(3):667-676.
[12]
Coates AS, Winer EP, Goldhirsch A, et al. Tailoring therapies--Improving the management of early breast cancer: St. Gallen international expert consensus on the primary therapy of early breast cancer[J]. Ann Oncol, 201526(8):1533-1546.
[13]
Harris LN, Ismaila N, McShane LM, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline[J]. J Clin Oncol, 2016, 34(10):1134-1150.
[14]
Telli ML, Gradishar WJ, Ward JH. NCCN guidelines updates: breast cancer[J]. J Natl Compr Canc Netw, 2019, 17(5.5):552-555.
[15]
Andre F, Ismaila N, Henry NL, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: ASCO clinical practice guideline update-integration of results from TAILORx[J]. J Clin Oncol, 2019, 37(22):1956-1964.
[16]
Slodkowska EA, Ross JS. MammaPrint 70-gene signature: another milestone in personalized medical care for breast cancer patients[J]. Expert Rev Mol Diagn, 2009, 9(5):417-422.
[17]
van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature, 2002, 415(6871):530-536.
[18]
Bueno-de-Mesquita JM, van Harten WH, Retel VP, et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER)[J]. Lancet Oncol, 2007, 8(12):1079-1087.
[19]
Mook S, Schmidt MK, Viale G, et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1-3 positive lymph nodes in an independent validation study[J]. Breast Cancer Res Treat, 2009, 116(2):295-302.
[20]
Cardoso F, van’t Veer LJ, Bogaerts J, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer[J]. N Engl J Med, 2016, 375(8):717-729.
[21]
Caruana E, Foucher Y, Tessier P, et al. Patient-centered simulations to assess the usefulness of the 70-gene signature for adjuvant chemotherapy administration in early-stage breast cancer[J]. Breast Cancer Res Treat, 2019, 174(2):537-542.
[22]
Tsai M, Lo S, Audeh W, et al. Association of 70-gene signature assay findings with physicians’ treatment guidance for patients with early breast cancer classified as intermediate risk by the 21-gene assay[J]. JAMA Oncol, 2018, 4(1): 133.
[23]
Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011[J]. Ann Oncol, 2011, 22(8):1736-1747.
[24]
Krop I, Ismaila N, Andre F, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update[J]. J Clin Oncol, 2017, 35(24):2838-2847.
[25]
Duffy MJ, Harbeck N, Nap M, et al. Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM)[J]. Eur J Cancer, 2017, 75:284-298.
[26]
中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会乳腺癌诊疗指南(2019版)[M]. 北京:人民卫生出版社,2019:38-56.
[27]
Henry NL, Somerfield MR, Abramson VG, et al. Role of patient and disease factors in adjuvant systemic therapy decision making for early-stage, operable breast cancer: update of the ASCO endorsement of the Cancer Care Ontario Guideline[J]. J Clin Oncol, 201937(22):1965-1977.
[28]
Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes[J]. J Clin Oncol, 2009, 27(8):1160-1167.
[29]
Wallden B, Storhoff J, Nielsen T, et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay[J]. BMC Med Genomics, 2015, 8(1):54.
[30]
Sestak I, Cuzick J, Dowsett M, et al. Prediction of late distant recurrence after 5 years of endocrine treatment: a combined analysis of patients from the Austrian breast and colorectal cancer study group 8 and arimidex, tamoxifen alone or in combination randomized trials using the PAM50 risk of recurrence score[J]. J Clin Oncol, 201533(8):916-922.
[31]
Lænkholm AV, Jensen MB, Eriksen JO, et al. PAM50 risk of recurrence score predicts 10-year distant recurrence in a comprehensive Danish cohort of postmenopausal women allocated to 5 years of endocrine therapy for hormone receptor-positive early breast cancer[J]. J Clin Oncol, 2018, 36(8): 735-740.
[32]
Liu S, Chapman JA, Burnell MJ, et al. Prognostic and predictive investigation of PAM50 intrinsic subtypes in the NCIC CTG MA.21 phase III chemotherapy trial[J]. Breast Cancer Res Treat2015149(2): 439-448.
[33]
Gnant M, Filipits M, Greil R, et al. Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: using the PAM50 risk of recurrence score in 1478 postmenopausal patients of the ABCSG-8 trial treated with adjuvant endocrine therapy alone[J]. Ann Oncol, 2014, 25(2):339-345.
[34]
Gnant M, Sestak I, Filipits M, et al. Identifying clinically relevant prognostic subgroups of postmenopausal women with node-positive hormone receptor-positive early-stage breast cancer treated with endocrine therapy: a combined analysis of ABCSG-8 and ATAC using the PAM50 risk of recurrence score and intrinsic subtype[J]. Ann Oncol, 201526(8):1685-1691.
[35]
Dowsett M, Sestak I, Lopez-Knowles E, et al. Comparison of PAM50 risk of recurrence score with Oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy[J]. J Clin Oncol, 2013, 31(22):2783-2790.
[36]
Filipits M, Rudas M, Jakesz R, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors[J]. Clin Cancer Res, 2011, 17(18):6012-6020.
[37]
Dubsky P, Brase JC, Jakesz R, et al. The EndoPredict score provides prognostic information on late distant metastases in ER+/HER2- breast cancer patients[J]. Br J Cancer, 2013, 109(12):2959-2964.
[38]
Filipits M, Rudas M, Jakesz R, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors[J]. Clin Cancer Res, 2011, 17(18): 6012-6020.
[39]
Filipits M, Dubsky P, Rudas M, et al. Prediction of distant recurrence using EndoPredict among women with ER+,HER2- node-positive and node-negative breast cancer treated with endocrine therapy only[J]. Clin Cancer Res, 2019, 25(13):3865-3872.
[40]
Sestak I, Martin M, Dubsky P, et al. Prediction of chemotherapy benefit by EndoPredict in patients with breast cancer who received adjuvant endocrine therapy plus chemotherapy or endocrine therapy alone[J]. Breast Cancer Res Treat, 2019, 176(2):377-386.
[41]
Loibl S, Weber K, Huober J, et al. Risk assessment after neoadjuvant chemotherapy in Luminal breast cancer using a clinicomolecular predictor[J]. Clin Cancer Res, 2018, 24(14):3358-3365.
[42]
Buus R, Sestak I, Kronenwett R, et al. Comparison of EndoPredict and EPclin with Oncotype DX recurrence score for prediction of risk of distant recurrence after endocrine therapy[J]. J Natl Cancer Inst, 2016, 108(11):149.
[43]
Sestak I, Buus R, Cuzick J, et al. Comparison of the performance of 6 prognostic signatures for estrogen receptor-positive breast cancer: a secondary analysis of a randomized clinical trial[J]. JAMA Oncol20184(4):545-553.
[44]
Burstein HJ, Curigliano G, Loibl S, et al. Estimating the benefits of therapy for early-stage breast cancer: the St. Gallen international consensus guidelines for the primary therapy of early breast cancer[J]. Ann Oncol, 2019, 30(10):1541-1557.
[45]
Cardoso F, Kyriakides S, Ohno S, et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2019, 30(8):1194-1220.
[46]
Ma XJ, Salunga R, Dahiya S, et al. A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer[J]. Clin Cancer Res, 2008, 14(9):2601-2608.
[47]
Sgroi DC, Sestak I, Cuzick J, et al. Prediction of late distant recurrence in patients with oestrogen-receptor-positive breast cancer: a prospective comparison of the breast-cancer index (BCI) assay, 21-gene recurrence score, and IHC4 in the TransATAC study population[J]. Lancet Oncol, 2013, 14(11): 1067-1076.
[48]
Habel LA, Sakoda LC, Achacoso N, et al. HOXB13:IL17BR and molecular grade index and risk of breast cancer death among patients with lymph node-negative invasive disease[J]. Breast Cancer Res, 2013, 15(2):R24.
[49]
Zhang Y, Schnabel CA, Schroeder BE, et al. Breast cancer index identifies early-stage estrogen receptor-positive breast cancer patients at risk for early- and late-distant recurrence[J]. Clin Cancer Res, 2013, 19(15):4196-4205.
[50]
Zhang Y, Schroeder BE, Jerevall PL, et al. A novel breast cancer index for prediction of distant recurrence in HR+ early-stage breast cancer with one to three positive nodes[J]. Clin Cancer Res, 2017, 23(23):7217-7224.
[51]
Sgroi DC, Chapman JA, Badovinac-Crnjevic T, et al. Assessment of the prognostic and predictive utility of the Breast Cancer Index (BCI): an NCIC CTG MA.14 study[J]. Breast Cancer Res, 2016, 18(1):1.
[52]
Bartlett JMS, Sgroi DC, Treuner K, et al. Breast Cancer Index and prediction of benefit from extended endocrine therapy in breast cancer patients treated in the adjuvant tamoxifen - to offer more? (aTTom) trial[J]. Ann Oncol, 201930(11):1776-1783.
[53]
Jerevall PL, Brock J, Palazzo J, et al. Discrepancy in risk assessment of hormone receptor positive early-stage breast cancer patients using breast cancer index and recurrence score[J]. Breast Cancer Res Treat, 2019173(2):375-383.
[54]
Varga Z, Sinn P, Seidman AD. Summary of head-to-head comparisons of patient risk classifications by the 21-gene Recurrence Score (RS) assay and other genomic assays for early breast cancer.[J] Int J Cancer, 2019, 145(4):882-893.
[55]
Zhang G, Wang Y, Chen B, et al. Characterization of frequently mutated cancer genes in Chinese breast tumors: a comparison of Chinese and TCGA cohorts[J]. Ann Transl Med, 2019, 7(8):179.
[56]
Yap YS, Lu YS, Tamura K, et al. Insights into breast cancer in the East vs the West[J]. JAMA Oncol, 2019, 5(10):1489-1496.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要