切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 303 -306. doi: 10.3877/cma.j.issn.1674-0807.2022.05.007

综述

乳腺癌转移相关肿瘤免疫细胞的研究进展
谷文巧1, 王聪1,()   
  1. 1. 210029 南京医科大学第一附属医院病理科
  • 收稿日期:2020-11-26 出版日期:2022-10-01
  • 通信作者: 王聪

Tumor immune cells associated with breast cancer metastasis

Wenqiao Gu1, Cong Wang1()   

  • Received:2020-11-26 Published:2022-10-01
  • Corresponding author: Cong Wang
引用本文:

谷文巧, 王聪. 乳腺癌转移相关肿瘤免疫细胞的研究进展[J]. 中华乳腺病杂志(电子版), 2022, 16(05): 303-306.

Wenqiao Gu, Cong Wang. Tumor immune cells associated with breast cancer metastasis[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(05): 303-306.

乳腺癌转移是患者死亡的主要原因,免疫疗法在延缓其进展方面得到广泛关注。研究数据表明,人体内的免疫细胞可促进转移级联反应中的各个步骤。调节性T细胞、B细胞、树突状细胞及骨髓来源的抑制细胞均表现出促进肿瘤转移的倾向,CD8+T细胞、自然杀伤细胞具有抗肿瘤转移特性,而肿瘤相关巨噬细胞、中性粒细胞则在不同肿瘤环境下表现为双重作用。笔者总结了肿瘤免疫细胞及其相关影响因素相互作用促进转移的潜在机制,以及针对这些细胞和影响因素的靶向治疗策略。

[1]
Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy[J]. Nat Rev Cancer, 2020, 20(11): 662-680.
[2]
Castaño Z, San Juan BP, Spiegel A, et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization[J]. Nat Cell Biol, 2018, 20(9): 1084-1097.
[3]
Monteran L, Ershaid N, Sabah I, et al. Bone metastasis is associated with acquisition of mesenchymal phenotype and immune suppression in a model of spontaneous breast cancer metastasis[J]. Sci Rep, 2020, 10(1): 13838.
[4]
Jiang X, Wang J, Deng X, et al. The role of microenvironment in tumor angiogenesis[J]. J Exp Clin Cancer Res2020, 39(1):204.
[5]
Ding TT, Yan F, Cao S, et al. Regulatory B cell: new member of immunosuppressive cell club[J]. Human Immunol, 2015, 76(9): 615-621.
[6]
Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy[J]. Nat Rev Immunol, 2017, 17(9): 559-572.
[7]
Katsuta E, Rashid OM, Takabe K. Clinical relevance of tumor microenvironment: immune cells, vessels, and mouse models[J]. Human Cell202033(4): 930-937.
[8]
Zhang Y, Gallastegui N, Rosenblatt JD. Regulatory B cells in anti-tumor immunity[J].Int Immunol201527(10):521-530.
[9]
Jayasingam SD, Citartan M, Thang TH, et al. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice[J]. Front Oncol, 2020, 9:1512.
[10]
Dai X, Lu L, Deng S, et al. USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer[J]. Theranostics, 2020, 10(20): 9332-9347.
[11]
Kitamura T, Qian BZ, Soong D, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages[J]. J Exp Med, 2015, 212(7): 1043-1059.
[12]
Zhang M, Liu ZZ, Aoshima K, et al. CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression[J]. Sci Transl Med2022, 14(630):eabf5473.
[13]
Ruiz-Torres SJ, Bourn JR, Benight NM, et al. Macrophage-mediated RON signaling supports breast cancer growth and progression through modulation of IL-35[J]. Oncogene, 2022, 41(3): 321-333.
[14]
Lu WC, Xie H, Yuan C, et al. Genomic landscape of the immune microenvironments of brain metastases in breast cancer[J]. J Transl Med, 2020, 18(1):327.
[15]
Xiao Y, Cong M, Li J, et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation[J].Cancer Cell, 202139(3):423-437.
[16]
Yang L, Liu Q, Zhang X, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25[J]. Nature, 2020, 583(7814):133-138.
[17]
Wang Z, Yang C, Li L, et al. Tumor-derived HMGB1 induces CD62L(dim) neutrophil polarization and promotes lung metastasis in triple-negative breast cancer[J]. Oncogenesis, 2020, 9(9): 82.
[18]
Hagerling C, Gonzalez H, Salari K, et al. Immune effector monocyte-neutrophil cooperation induced by the primary tumor prevents metastatic progression of breast cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(43): 21 704-21 714.
[19]
Wu L, Saxena S, Goel P, et al. Breast cancer cell-neutrophil interactions enhance neutrophil survival and pro-tumorigenic activities[J]. Cancers (Basel), 2020, 12(10): 2884
[20]
Ding L, Li Q, Chakrabarti J, et al. MiR130b from Schlafen4+ MDSCs stimulates epithelial proliferation and correlates with preneoplastic changes prior to gastric cancer[J].Gut202069(10):1750-1761.
[21]
Kumar V, Patel S, Tcyganov E, et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment[J]. Trends Immunol, 201637(3): 208-220.
[22]
Danilin S, Merkel AR, Johnson JR, et al. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction[J].Oncoimmunology20121(9):1484-1494.
[23]
Deng Z, Rong Y, Teng Y, et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis[J]. Oncogene, 2017, 36(5): 639-651.
[24]
Yu B, Luo F, Sun B, et al. KAT6A acetylation of SMAD3 regulates myeloid-derived suppressor cell recruitment, metastasis, and immunotherapy in triple-negative breast cancer[J]. Adv Sci (Weinh), 2021, 8(20): e2100014.
[25]
Bottos A, Gotthardt D, Gill JW, et al. Decreased NK-cell tumour immunosurveillance consequent to JAK inhibition enhances metastasis in breast cancer models[J].Nat Commun20167:12 258.
[26]
Brownlie D, Doughty-Shenton D, Yh Soong D, et al. Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β[J]. J Immunother Cancer, 2021, 9(1): e001740.
[27]
Knab VM, Gotthardt D, Klein K, et al. Triple-negative breast cancer cells rely on kinase-independent functions of CDK8 to evade NK-cell-mediated tumor surveillance[J]. Cell Death Dis, 2021, 12(11): 991.
[28]
Sawant A, Hensel JA, Chanda D, et al. Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells[J]. J Immunol2012189(9):4258-4265.
[29]
Gong Z, Li Q, Shi J, et al. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment[J]. Immunity, 2022, 55(8): 1483-1500.
[30]
Ghoneim HE, Zamora AE, Thomas PG, et al. Cell-intrinsic barriers of T cell-based immunotherapy[J]. Trends Mol Med, 2016, 22(12): 1000-1011.
[31]
Liu S, Song A, Zhou X, et al.ceRNA network development and tumour-infiltrating immune cell analysis of metastatic breast cancer to bone[J]. J Bone Oncol, 2020, 24: 100 304.
[32]
Wang P, Xue L, Wang L, et al. Long noncoding RNA DLX6-AS1 promotes migration and invasion of breast cancer cells by upregulating FUS[J]. Panminerva Med, 2020 Jan 20. doi: 10.23736/S0031-0808.19.03773-X. Online ahead of print.
[33]
Mansurov A, Ishihara J, Hosseinchi P, et al. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours[J]. Nat Biomed Eng20204(5): 531-543.
[34]
Gao W, Wen H, Liang L, et al. IL20RA signaling enhances stemness and promotes the formation of an immunosuppressive microenvironment in breast cancer[J]. Theranostics, 2021, 11(6): 2564-2580.
[35]
Zhang Y, Gallastegui N, Rosenblatt JD. Regulatory B cells in anti-tumor immunity[J]. Int Immunol, 2015, 27(10): 521-530.
[36]
Vafaizadeh V, Buechel D, Rubinstein N, et al. The interactions of Bcl9/Bcl9L with β-catenin and pygopus promote breast cancer growth, invasion, and metastasis[J]. Oncogene202140(43):6195-6209.
[37]
Hosonaga M, Saya H, Arima Y. Molecular and cellular mechanisms underlying brain metastasis of breast cancer[J]. Cancer Metastasis Rev, 2020, 39(3): 711-720.
[38]
Moradpoor R, Gharebaghian A, Shahi F, et al. Identification and validation of stage-associated PBMC biomarkers in breast cancer using MS-based proteomics[J]. Front Oncol, 2020, 10: 1101
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 孙帼, 谢迎东, 徐超丽, 杨斌. 超声联合临床特征的列线图模型预测甲状腺乳头状癌淋巴结转移的价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 734-742.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[5] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[6] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[7] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[8] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[9] 李雄雄, 周灿, 徐婷, 任予, 尚进. 初诊导管原位癌伴微浸润腋窝淋巴结转移率的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 466-474.
[10] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[11] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[12] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[13] 杨红杰, 张智春, 孙轶. 直肠癌淋巴结转移诊断研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 512-518.
[14] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[15] 孔凡彪, 杨建荣. 肝脏基础疾病与结直肠癌肝转移之间关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 818-822.
阅读次数
全文


摘要