切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 303 -306. doi: 10.3877/cma.j.issn.1674-0807.2022.05.007

综述

乳腺癌转移相关肿瘤免疫细胞的研究进展
谷文巧1, 王聪1,()   
  1. 1. 210029 南京医科大学第一附属医院病理科
  • 收稿日期:2020-11-26 出版日期:2022-10-01
  • 通信作者: 王聪

Tumor immune cells associated with breast cancer metastasis

Wenqiao Gu1, Cong Wang1()   

  • Received:2020-11-26 Published:2022-10-01
  • Corresponding author: Cong Wang
引用本文:

谷文巧, 王聪. 乳腺癌转移相关肿瘤免疫细胞的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2022, 16(05): 303-306.

Wenqiao Gu, Cong Wang. Tumor immune cells associated with breast cancer metastasis[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(05): 303-306.

乳腺癌转移是患者死亡的主要原因,免疫疗法在延缓其进展方面得到广泛关注。研究数据表明,人体内的免疫细胞可促进转移级联反应中的各个步骤。调节性T细胞、B细胞、树突状细胞及骨髓来源的抑制细胞均表现出促进肿瘤转移的倾向,CD8+T细胞、自然杀伤细胞具有抗肿瘤转移特性,而肿瘤相关巨噬细胞、中性粒细胞则在不同肿瘤环境下表现为双重作用。笔者总结了肿瘤免疫细胞及其相关影响因素相互作用促进转移的潜在机制,以及针对这些细胞和影响因素的靶向治疗策略。

[1]
Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy[J]. Nat Rev Cancer, 2020, 20(11): 662-680.
[2]
Castaño Z, San Juan BP, Spiegel A, et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization[J]. Nat Cell Biol, 2018, 20(9): 1084-1097.
[3]
Monteran L, Ershaid N, Sabah I, et al. Bone metastasis is associated with acquisition of mesenchymal phenotype and immune suppression in a model of spontaneous breast cancer metastasis[J]. Sci Rep, 2020, 10(1): 13838.
[4]
Jiang X, Wang J, Deng X, et al. The role of microenvironment in tumor angiogenesis[J]. J Exp Clin Cancer Res2020, 39(1):204.
[5]
Ding TT, Yan F, Cao S, et al. Regulatory B cell: new member of immunosuppressive cell club[J]. Human Immunol, 2015, 76(9): 615-621.
[6]
Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy[J]. Nat Rev Immunol, 2017, 17(9): 559-572.
[7]
Katsuta E, Rashid OM, Takabe K. Clinical relevance of tumor microenvironment: immune cells, vessels, and mouse models[J]. Human Cell202033(4): 930-937.
[8]
Zhang Y, Gallastegui N, Rosenblatt JD. Regulatory B cells in anti-tumor immunity[J].Int Immunol201527(10):521-530.
[9]
Jayasingam SD, Citartan M, Thang TH, et al. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice[J]. Front Oncol, 2020, 9:1512.
[10]
Dai X, Lu L, Deng S, et al. USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer[J]. Theranostics, 2020, 10(20): 9332-9347.
[11]
Kitamura T, Qian BZ, Soong D, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages[J]. J Exp Med, 2015, 212(7): 1043-1059.
[12]
Zhang M, Liu ZZ, Aoshima K, et al. CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression[J]. Sci Transl Med2022, 14(630):eabf5473.
[13]
Ruiz-Torres SJ, Bourn JR, Benight NM, et al. Macrophage-mediated RON signaling supports breast cancer growth and progression through modulation of IL-35[J]. Oncogene, 2022, 41(3): 321-333.
[14]
Lu WC, Xie H, Yuan C, et al. Genomic landscape of the immune microenvironments of brain metastases in breast cancer[J]. J Transl Med, 2020, 18(1):327.
[15]
Xiao Y, Cong M, Li J, et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation[J].Cancer Cell, 202139(3):423-437.
[16]
Yang L, Liu Q, Zhang X, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25[J]. Nature, 2020, 583(7814):133-138.
[17]
Wang Z, Yang C, Li L, et al. Tumor-derived HMGB1 induces CD62L(dim) neutrophil polarization and promotes lung metastasis in triple-negative breast cancer[J]. Oncogenesis, 2020, 9(9): 82.
[18]
Hagerling C, Gonzalez H, Salari K, et al. Immune effector monocyte-neutrophil cooperation induced by the primary tumor prevents metastatic progression of breast cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(43): 21 704-21 714.
[19]
Wu L, Saxena S, Goel P, et al. Breast cancer cell-neutrophil interactions enhance neutrophil survival and pro-tumorigenic activities[J]. Cancers (Basel), 2020, 12(10): 2884
[20]
Ding L, Li Q, Chakrabarti J, et al. MiR130b from Schlafen4+ MDSCs stimulates epithelial proliferation and correlates with preneoplastic changes prior to gastric cancer[J].Gut202069(10):1750-1761.
[21]
Kumar V, Patel S, Tcyganov E, et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment[J]. Trends Immunol, 201637(3): 208-220.
[22]
Danilin S, Merkel AR, Johnson JR, et al. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction[J].Oncoimmunology20121(9):1484-1494.
[23]
Deng Z, Rong Y, Teng Y, et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis[J]. Oncogene, 2017, 36(5): 639-651.
[24]
Yu B, Luo F, Sun B, et al. KAT6A acetylation of SMAD3 regulates myeloid-derived suppressor cell recruitment, metastasis, and immunotherapy in triple-negative breast cancer[J]. Adv Sci (Weinh), 2021, 8(20): e2100014.
[25]
Bottos A, Gotthardt D, Gill JW, et al. Decreased NK-cell tumour immunosurveillance consequent to JAK inhibition enhances metastasis in breast cancer models[J].Nat Commun20167:12 258.
[26]
Brownlie D, Doughty-Shenton D, Yh Soong D, et al. Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β[J]. J Immunother Cancer, 2021, 9(1): e001740.
[27]
Knab VM, Gotthardt D, Klein K, et al. Triple-negative breast cancer cells rely on kinase-independent functions of CDK8 to evade NK-cell-mediated tumor surveillance[J]. Cell Death Dis, 2021, 12(11): 991.
[28]
Sawant A, Hensel JA, Chanda D, et al. Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells[J]. J Immunol2012189(9):4258-4265.
[29]
Gong Z, Li Q, Shi J, et al. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment[J]. Immunity, 2022, 55(8): 1483-1500.
[30]
Ghoneim HE, Zamora AE, Thomas PG, et al. Cell-intrinsic barriers of T cell-based immunotherapy[J]. Trends Mol Med, 2016, 22(12): 1000-1011.
[31]
Liu S, Song A, Zhou X, et al.ceRNA network development and tumour-infiltrating immune cell analysis of metastatic breast cancer to bone[J]. J Bone Oncol, 2020, 24: 100 304.
[32]
Wang P, Xue L, Wang L, et al. Long noncoding RNA DLX6-AS1 promotes migration and invasion of breast cancer cells by upregulating FUS[J]. Panminerva Med, 2020 Jan 20. doi: 10.23736/S0031-0808.19.03773-X. Online ahead of print.
[33]
Mansurov A, Ishihara J, Hosseinchi P, et al. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours[J]. Nat Biomed Eng20204(5): 531-543.
[34]
Gao W, Wen H, Liang L, et al. IL20RA signaling enhances stemness and promotes the formation of an immunosuppressive microenvironment in breast cancer[J]. Theranostics, 2021, 11(6): 2564-2580.
[35]
Zhang Y, Gallastegui N, Rosenblatt JD. Regulatory B cells in anti-tumor immunity[J]. Int Immunol, 2015, 27(10): 521-530.
[36]
Vafaizadeh V, Buechel D, Rubinstein N, et al. The interactions of Bcl9/Bcl9L with β-catenin and pygopus promote breast cancer growth, invasion, and metastasis[J]. Oncogene202140(43):6195-6209.
[37]
Hosonaga M, Saya H, Arima Y. Molecular and cellular mechanisms underlying brain metastasis of breast cancer[J]. Cancer Metastasis Rev, 2020, 39(3): 711-720.
[38]
Moradpoor R, Gharebaghian A, Shahi F, et al. Identification and validation of stage-associated PBMC biomarkers in breast cancer using MS-based proteomics[J]. Front Oncol, 2020, 10: 1101
[1] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[2] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[3] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[4] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[5] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[6] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[7] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[8] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[9] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[10] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[11] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[12] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[13] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[14] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[15] 刘郁, 段绍斌, 丁志翔, 史志涛. miR-34a-5p 在结肠癌患者的表达及其与临床特征及预后的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 485-490.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?