切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (02) : 67 -73. doi: 10.3877/cma.j.issn.1674-0807.2022.02.001

所属专题: 总编推荐 文献

专家论坛

肿瘤生态环境调控乳腺肿瘤耐药
宋尔卫1,()   
  1. 1. 510120 广州,中山大学孙逸仙纪念医院逸仙乳腺肿瘤医院
  • 收稿日期:2022-03-29 出版日期:2022-04-01
  • 通信作者: 宋尔卫

Ecological environment of tumor modulates drug resistance of breast tumor

Erwei Song1,()   

  1. 1. Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
  • Received:2022-03-29 Published:2022-04-01
  • Corresponding author: Erwei Song
引用本文:

宋尔卫. 肿瘤生态环境调控乳腺肿瘤耐药[J/OL]. 中华乳腺病杂志(电子版), 2022, 16(02): 67-73.

Erwei Song. Ecological environment of tumor modulates drug resistance of breast tumor[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(02): 67-73.

乳腺肿瘤的系统性治疗(化疗、内分泌治疗和靶向治疗等)是目前降低乳腺癌患者复发风险,延长其生存的主要手段。然而,仍有40%乳腺癌患者在治疗过程中或治疗结束后出现耐药,导致疾病进展,提示上述传统治疗方案未能彻底清除肿瘤细胞。肿瘤生态学说的提出从一个全新的角度为理解肿瘤治疗的耐受和药物新靶点的研发提供了新的契机。肿瘤生态学说认为肿瘤与周围及远处微环境等相互作用从而影响肿瘤的发生、发展及其对治疗的敏感性。在本文中,笔者剖析了由乳腺癌细胞群和微环境组成的肿瘤生态环境与乳腺癌耐药机制之间的关系,并结合相关临床研究进展加以阐述,以期为逆转乳腺癌耐药提供新的思路和治疗策略。

Systemic therapy including chemotherapy, endocrine therapy and targeted therapy, is currently performed to reduce the risk of recurrence and prolong the survival of breast cancer patients. However, almost 40% breast cancer patients suffer recurrence due to drug resistance, suggesting that traditional treatment regimens fail to completely kill tumor cells. The theory of tumor ecology provides a new insight to understand treatment resistance of tumors and find new targets of drugs. According to tumor ecology, the interaction between tumors and surrounding microenvironment can affect the initiation, development and treatment sensitivity of tumors. In this review, the author illustrates the relationship between drug resistance of breast cancer and tumor ecological environment composed of breast cancer cells and microenvironment, and reviews the related clinical research progress, in order to provide references for reversing drug resistance of breast cancer.

图1 肿瘤生态环境调控乳腺癌耐药的机制注:CD为白细胞分化抗原
表1 乳腺癌免疫治疗相关临床研究汇总
乳腺癌 临床试验 分期 研究目的 状态 重要结果 参考文献
三阴型 KEYNOTE-119(NCT02555657) 3期 PD-L1抑制剂帕博利珠单克隆抗体比卡培他滨、艾立布林、吉西他滨或长春瑞滨 完成 mOS:12.7个月比11.6个月,HR= 0.78 [26]
  IMpassion 030(NCT03498716) 3期 PD-L1抑制剂tezolizumab+蒽环类+紫杉醇比蒽环类+紫杉醇 进行中 NA [27]
  A-BRAVE(NCT02926196) 3期 PD-L1抑制剂avelumab比观察 进行中 NA [28]
  SWOG 1418(NCT02954874) 3期 PD-L1抑制剂帕博利珠单克隆抗体比观察 进行中 NA [29]
  SAFIR02- BREAST IMMUNO (NCT02299999) 2期 PD-L1抑制剂durvalumab比化疗 完成 mOS: 21.7个月比17.9个月,HR = 0.84 [30]
  DORA(NCT03167619) 2期 奥拉帕尼+ PD-L1抑制剂durvalumab比奥拉帕尼 进行中 NA [31]
  KEYLYNK-009(NCT04191135) 2期/3期 PD-L1抑制剂帕博利珠单克隆抗体+奥拉帕尼比PD-L1抑制剂帕博利珠单克隆抗体+化疗 进行中 NA [32]
  KEYNOTE-173(NCT02622074) 1b期 PD-L1抑制剂帕博利珠单克隆抗体+白蛋白紫杉醇+多柔比星+环磷酰胺比PD-L1抑制剂帕博利珠单克隆抗体+白蛋白紫杉醇+多柔比星+环磷酰胺+卡铂 完成 pCR率:60%;1年OS率:80%~100% [33]
激素受体阳性型 I-SPY2 NCT01042379 2期 PD-L1抑制剂帕博利珠单克隆抗体+紫杉醇+多柔比星+环磷酰胺比标准治疗(紫杉醇+多柔比星+环磷酰胺) 完成 pCR率:30%比13% [34]
  EYNOTE-28 NCT02054806 1b期 PD-L1抑制剂帕博利珠单克隆抗体 完成 mOS:8.6个月 [35]
  NCT03051659 2期 PD-L1抑制剂帕博利珠单克隆抗体+艾立布林比艾立布林 完成 mPFS:4.1个月比4.2个月 [36]
  NCT02971748 2期 PD-L1抑制剂帕博利珠单克隆抗体+内分泌治疗 进行中 NA [37]
  NCT03879174 2期 PD-L1抑制剂帕博利珠单克隆抗体+他莫昔芬 进行中 NA [38]
HER-2阳性型 KATE2(NCT02924883) 2期 T-DM1+PD-L1抑制剂阿特珠单克隆抗体比T-DM1 完成 pCR率:57.6%比41.4% [39]
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin202171(3):209-249.
[2]
Hanker AB, Sudhan DR, Arteaga CL. Overcoming endocrine resistance in breast cancer[J]. Cancer Cell202037(4):496-513.
[3]
Gu G, Dustin D, Fuqua SA.Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment[J]. Curr Opin Pharmacol201631:97-103.
[4]
Nedeljkovic′ M, Damjanovic′ A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge[J]. Cells20198(9):957.
[5]
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Increasing the dose intensity of chemotherapy by more frequent administration or sequential scheduling: a patient-level meta-analysis of 37 298 women with early breast cancer in 26 randomised trials[J]. Lancet2019393(10 179):1440-1452.
[6]
Charpin C, Vielh P, Duffaud F, et al.Quantitative immunocytochemical assays of P-glycoprotein in breast carcinomas: correlation to messenger RNA expression and to immunohistochemical prognostic indicators[J]. J Natl Cancer Inst199486(20):1539-1545.
[7]
Kubota T, Furukawa T, Tanino H, et al.Resistant mechanisms of anthracyclines--pirarubicin might partly break through the P-glycoprotein-mediated drug-resistance of human breast cancer tissues[J]. Breast Cancer20018(4):333-338.
[8]
Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev19898(2):98-101.
[9]
Sun Y. Tumor microenvironment and cancer therapy resistance [J]. Cancer Lett2016380(1):205-215.
[10]
Skipper HE, Schabel FM Jr, Wilcox WS. Experimental evaluation of potential anticancer agents. xiii. on the criteria and kinetics associated with " curability" of experimental leukemia[J]. Cancer Chemother Rep196435:1-111.
[11]
Norton L. Cancer log-kill revisited[J]. Am Soc Clin Oncol Educ Book2014:3-7.
[12]
Norton L, Simon R, Brereton HD, et al. Predicting the course of Gompertzian growth[J]. Nature1976264(5586):542-545.
[13]
McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future[J]. Cell2017168(4):613-628.
[14]
Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies[J]. Nat Rev Clin Oncol201815(2):81-94.
[15]
Tep J, Videmann B, Mazallon M, et al. Transepithelial transport of fusariotoxin nivalenol: mediation of secretion by ABC transporters[J]. Toxicol Lett2007170(3):248-258.
[16]
Gilbert L, Elwood LJ, Merino M, et al. A pilot study of pi-class glutathione S-transferase expression in breast cancer: correlation with estrogen receptor expression and prognosis in node-negative breast cancer[J]. J Clin Oncol, 199311(1):49-58.
[17]
Minisini AM, Di Loreto C, Mansutti M, et al.Topoisomerase IIalpha and APE/ref-1 are associated with pathologic response to primary anthracycline-based chemotherapy for breast cancer[J]. Cancer Lett2005224(1):133-139.
[18]
Kroemer G, Galluzzi L, Kepp O, et al. Immunogenic cell death in cancer therapy[J]. Annu Rev Immunol201331:51-72.
[19]
Koual M, Tomkiewicz C, Cano-Sancho G, et al. Environmental chemicals, breast cancer progression and drug resistance[J].Environ Health202019(1):117.
[20]
Sato H, Niimi A, Yasuhara T, et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells[J]. Nat Commun20178(1):1751.
[21]
Cui L, Huang J, Zhan Y, et al. Association between the genetic polymorphisms of the pharmacokinetics of anthracycline drug and myelosuppression in a patient with breast cancer with anthracycline-based chemotherapy[J]. Life Sci2021276:119 392.
[22]
Rivera E, Smith RE Jr. Trends in recommendations of myelosuppressive chemotherapy for the treatment of breast cancer: evolution of the national comprehensive cancer network guidelines and the cooperative group studies[J]. Clin Breast Cancer20067(1):33-41.
[23]
Pellegrino B, Hlavata Z, Migali C, et al.Luminal breast cancer: risk of recurrence and tumor-associated immune suppression[J]. Mol Diagn Ther202125(4):409-424.
[24]
Park YH, Lal S, Lee JE, et al. Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome[J]. Nat Commun202011(1):6175.
[25]
Bianchini G, Gianni L. The immune system and response to HER2-targeted treatment in breast cancer[J]. Lancet Oncol201415(2):e58-e68.
[26]
Winer EP, Lipatov O, Im SA, et al.Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial[J]. Lancet Oncol202122(4):499-511.
[27]
Hoffmann L. A study comparing atezolizumab (anti PD-L1 antibody) in combination with adjuvant anthracycline/taxane-based chemotherapy versus chemotherapy alone in patients with operable triple-negative breast cancer (IMpassion030)[EB/OL].[2022-03-21].

URL    
[28]
Pierfranco C. Adjuvant treatment for high-risk triple negative breast cancer patients with the anti-PD-l1 antibody avelumab (A-Brave)[EB/OL].[2022-03-21].

URL    
[29]
Lajos P. Testing MK-3475 (pembrolizumab) as adjuvant therapy for triple receptor-negative breast cancer[EB/OL].[2022-03-21].

URL    
[30]
Bachelot T, Filleron T, Bieche I, et al. Durvalumab compared to maintenance chemotherapy in metastatic breast cancer: the randomized phase II SAFIR02-BREAST IMMUNO trial[J]. Nat Med202127(2):250-255.
[31]
Sarah S. Phase II multicenter study of durvalumab and olaparib in platinum treated advanced triple negative breast cancer (DORA)[EB/OL].[2022-03-21].

URL    
[32]
Merck S, Dohme C. Study of olaparib plus pembrolizumab versus chemotherapy plus pembrolizumab after induction with first-line chemotherapy plus pembrolizumab in triple negative breast cancer (TNBC) (MK-7339-009/KEYLYNK-009) [EB/OL].[2022-03-21].

URL    
[33]
Merck S, Dohme C. Safety and efficacy study of pembrolizumab (MK-3475) in combination with chemotherapy as neoadjuvant treatment for participants with triple negative breast cancer (TNBC) (MK-3475-173/KEYNOTE-173) [EB/OL].[2022-03-21].

URL    
[34]
Nanda R, Liu MC, Yau C, et al.Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial[J]. JAMA Oncol20206(5):676-684.
[35]
Ott PA, Bang YJ, Piha-Paul SA, et al.T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol201937(4):318-327.
[36]
Tolaney SM, Barroso-Sousa R, Keenan T, et al. Effect of eribulin with or without pembrolizumab on progression-free survival for patients with hormone receptor-positive, erbb2-negative metastatic breast cancer: a randomized clinical trial[J]. JAMA Oncol, 20206(10):1598-1605.
[37]
Clinton Y. Pembrolizumab in treating patients with hormone receptor positive, localized inflammatory breast cancer who are receiving hormone therapy and did not achieve a pathological complete response to chemotherapy[EB/OL].[2022-03-21].

URL    
[38]
Shaheenah D. Pembrolizumab and tamoxifen among women with advanced hormone receptor positive breast cancer and Esr1 mutation (Pembro) [EB/OL].[2022-03-21].

URL    
[39]
Emens LA, Esteva FJ, Beresford M, et al.Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial[J]. Lancet Oncol202021(10):1283-1295.
[40]
Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion 031): a randomised, double-blind, phase 3 trial[J]. Lancet2020396(10 257):1090-1100.
[41]
Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov201918(2):99-115.
[42]
Cox TR. The matrix in cancer[J]. Nat Rev Cancer202121(4):217-238.
[43]
Lovitt CJ, Shelper TB, Avery VM. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins[J]. BMC Cancer201818(1):41.
[44]
Kim HW, Park JE, Baek M, et al. Matrix metalloproteinase-1 (mmp1) upregulation through promoter hypomethylation enhances tamoxifen resistance in breast cancer[J]. Cancers (Basel)202214(5):1232.
[45]
Robertson C. The extracellular matrix in breast cancer predicts prognosis through composition, splicing, and crosslinking[J]. Exp Cell Res2016343(1):73-81.
[46]
Qin X, Lv X, Li P, et al.Matrix stiffness modulates ILK-mediated YAP activation to control the drug resistance of breast cancer cells[J]. Biochim Biophys Acta Mol Basis Dis20201866(3):165 625.
[47]
Gao H, Tian Q, Zhu L, et al. 3D extracellular matrix regulates the activity of T cells and cancer associated fibroblasts in breast cancer[J]. Front Oncol202111:764 204.
[48]
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering[J]. Acta Pharm Sin B20188(1):34-50.
[49]
Deligne C, Midwood KS. Macrophages and extracellular matrix in breast cancer: partners in crime or protective allies? [J]. Front Oncol202111:620 773.
[50]
Mpekris F, Panagi M, Voutouri C, et al.Normalizing the microenvironment overcomes vessel compression and resistance to nano-immunotherapy in breast cancer lung metastasis[J]. Adv Sci (Weinh)20208(3):2 001 917.
[51]
Ramadan WS, Zaher DM, Altaie AM, et al. Potential therapeutic strategies for lung and breast cancers through understanding the anti-angiogenesis resistance mechanisms[J]. Int J Mol Sci202021(2):565.
[52]
Trédan O, Lacroix-Triki M, Guiu S, et al. Angiogenesis and tumor microenvironment: bevacizumab in the breast cancer model[J]. Target Oncol201510(2):189-198.
[53]
Li Q, Wang Y, Jia W, et al. Low-dose anti-angiogenic therapy sensitizes breast cancer to PD-1 blockade[J]. Clin Cancer Res202026(7):1712-1724.
[54]
Iyengar NM, Gucalp A, Dannenberg AJ, et al. Obesity and cancer mechanisms: tumor microenvironment and inflammation[J]. J Clin Oncol201634(35):4270-4276.
[55]
Wang T, Fahrmann JF, Lee H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 201827(1):136-150.
[56]
Hoy AJ, Balaban S, Saunders DN. Adipocyte-tumor cell metabolic crosstalk in breast cancer[J]. Trends Mol Med201723(5):381-392.
[57]
Choi J, Cha YJ, Koo JS. Adipocyte biology in breast cancer: From silent bystander to active facilitator[J]. Prog Lipid Res201869:11-20.
[58]
Incio J, Ligibel JA, McManus DT, et al.Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2[J]. Sci Transl Med, 201810(432):eaag0945.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要