切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (02) : 74 -83. doi: 10.3877/cma.j.issn.1674-0807.2022.02.002

论著

基于NR3C2相关免疫调节基因的乳腺癌预后模型构建与验证
张哲1, 樊俊1, 刘文斌2, 徐琰1,()   
  1. 1. 400042 重庆,陆军军医大学附属陆军特色医学中心乳腺甲状腺外科
    2. 400038 重庆,陆军军医大学军事预防医学院毒理学研究所
  • 收稿日期:2021-08-13 出版日期:2022-04-01
  • 通信作者: 徐琰
  • 基金资助:
    陆军军医大学临床技术创新培育项目(CX2019LC120)

Construction and validation of breast cancer prognostic model based on NR3C2-related immunomodulator genes

Zhe Zhang1, Jun Fan1, Wenbin Liu2, Yan Xu1,()   

  1. 1. Department of Breast and Thyroid Surgery, Army Medical Center, Army Medical University, Chongqing 400042, China
    2. Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
  • Received:2021-08-13 Published:2022-04-01
  • Corresponding author: Yan Xu
引用本文:

张哲, 樊俊, 刘文斌, 徐琰. 基于NR3C2相关免疫调节基因的乳腺癌预后模型构建与验证[J]. 中华乳腺病杂志(电子版), 2022, 16(02): 74-83.

Zhe Zhang, Jun Fan, Wenbin Liu, Yan Xu. Construction and validation of breast cancer prognostic model based on NR3C2-related immunomodulator genes[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(02): 74-83.

目的

通过生物信息学方法分析NR3C2基因在乳腺癌中的免疫作用并构建预后模型。

方法

(1)分别以癌症基因组图谱(TCGA)数据库中的乳腺癌队列和基因综合表达(GEO)数据库中的GSE42568队列作为训练集(113例癌旁样本和1 019例乳腺癌样本)和测试集(17例癌旁样本和104例乳腺癌样本),比较上述2个队列中NR3C2在癌旁样本和乳腺癌样本中的mRNA表达;通过TCGA队列、Kaplan-Meier plotter队列(4 929例乳腺癌样本)分析NR3C2表达对无复发生存期(RFS)的影响。(2)利用基因集富集分析(GSEA)探讨NR3C2潜在的生物学功能,通过单样本基因集富集分析(ssGSEA)定量评估24种免疫细胞,以皮尔森系数计算NR3C2和24种免疫细胞及70个免疫调节基因的相关性。(3)通过多元逐步Cox回归的方法在TCGA队列中构建NR3C2相关免疫调节基因的预后模型,按照中位风险值将TCGA队列分为高、低风险组,比较2组的无复发生存率,采用受试者操作特征曲线(ROC)计算模型的敏感度和特异度,并在GSE42568队列中进行验证;结合其他临床参数,通过多因素Cox回归分析该模型的独立预后性能。(4)在TCGA队列中,基于临床分期和风险值构建列线图,利用校准曲线对其准确性进行评价,通过时间相关曲线下面积(tAUC)比较不同指标预测的准确度。(5)为了验证NR3C2基因在mRNA和蛋白水平上的表达是否一致,本研究另外收集了2021年9月于陆军特色医学中心乳腺甲状腺外科进行手术切除的3例乳腺癌患者的临床组织样本,通过Western blot实验检测其癌旁组织和癌组织中NR3C2的蛋白表达量。

结果

(1)TCGA样本分析结果显示:与癌旁组织相比,NR3C2的mRNA表达量在乳腺癌组织中显著下降(2.59±0.43比0.98±0.62,t=35.990,P<0.001)。在GSE42568队列中,乳腺癌组织中NR3C2的mRNA表达量比癌旁组织显著下降(5.35±1.47比3.32±1.12,t=7.096,P<0.001)。生存分析结果显示:在TCGA队列、Kaplan-Meier plotter队列中,NR3C2表达和乳腺癌患者的RFS呈正相关(HR=0.667、0.725,95%CI:0.458~0.972、0.653~0.804,P均<0.050)。(2)GSEA结果提示:NR3C2主要参与JAK-STAT和TGF-β等免疫相关信号通路。相关性分析发现:NR3C2的mRNA表达和19种免疫细胞的浸润程度及43个免疫调节基因的表达均显著相关(P均<0.050)。(3)将上述43个NR3C2相关的免疫调节基因纳入Cox回归分析,构建了13个免疫调节基因组成的预后模型,风险截断值为0.988。生存分析提示在TCGA队列及GSE42568队列中,高风险组的RFS明显低于低风险组(HR=2.682、2.389,95%CI:1.839~3.910、1.343~4.248,P均<0.010);AUC为0.758、0.618(95%CI:0.662~0.857、0.545~0.758,敏感度:0.833、0.538,特异度:0.614、0.714,P均<0.010)。多因素Cox回归分析发现该模型的风险值可作为乳腺癌独立的预后因子(HR=1.259、1.163,95%CI:1.187~1.336、1.068~1.266,P均<0.001)。(4)基于临床分期和风险值构建的列线图可以预测乳腺癌患者3年、5年和8年的RFS,校准曲线提示其具有较好的预测准确性,tAUC提示其优于临床分期和预后模型。(5)Western blot实验结果显示:NR3C2的蛋白表达量在乳腺癌组织中显著降低。

结论

NR3C2是乳腺癌患者潜在的免疫治疗靶点和预后生物标志物。

Objective

To analyze the immune implication of NR3C2 gene in breast cancer using bioinformatics methods and construct a prognostic model.

Methods

(1) The breast cancer cohort in the Cancer Genome Atlas (TCGA) database and the GSE42568 cohort in the Gene Expression Omnibus (GEO) database were used as training set (113 paracancerous samples and 1 019 breast cancer samples) and testing set (17 paracancerous samples and 104 breast cancer samples), respectively. The mRNA level of NR3C2 was compared between adjacent tissue and tumor tissue samples in the above 2 cohorts. The effect of NR3C2 expression on recurrence-free survival (RFS) was analyzed in cohorts of TCGA and Kaplan-Meier plotter(4 929 breast cancer samples), respectively. (2) The Gene Set Enrichment Analysis (GSEA) was employed to explore the potential biological functions of NR3C2. The 24 immune cells were quantitively accessed by single sample gene set enrichment analysis (ssGSEA) and the correlation of NR3C2 with 24 immune cells and 70 immunomodulator genes were conducted by Pearson coefficient. (3) A prognostic model was constructed by NR3C2-related immunomodulator genes in the TCGA cohort through multivariate stepwise Cox regression. The TCGA cohort was divided into two groups (high-risk group and low-risk group) by median risk value and RFS was compared between two groups. The sensitivity and specificity of the model was calculated using receiver operating characteristic (ROC) curves and validated in the GSE42568 cohort. Combined with other clinical parameters, the independent prognostic performance of this model was analyzed by multivariate Cox regression. (4) A nomogram was constructed based on pathological stage and risk value in TCGA cohort. The calibration curve was used to evaluate its accuracy and the predictive accuracy of different parameters was compared by time-dependent area under curve (tAUC). (5) In order to verify whether the NR3C2 mRNA expression is consistent with NR3C2 protein expression, we collected clinical specimens from three breast cancer patients who underwent surgical resection in the Department of Breast and Thyroid Surgery of the Army Medical Center in September 2021. The protein expression of NR3C2 in the paracancerous tissue and cancer tissue was detected by Western blot analysis.

Results

(1) In TCGA cohort, the mRNA expression of NR3C2 in breast cancer tissue was significantly lower than that in paracancerous tissues (2.59±0.43 vs 0.98±0.62, t=35.990, P<0.001). In GSE42568 cohort, the mRNA expression of NR3C2 in breast cancer tissue was significantly lower than that in paracancerous tissues (5.35±1.47 vs 3.32±1.12, t=7.096, P<0.001). The results of survival analysis showed that in TCGA cohort and Kaplan-Meier plotter cohort, NR3C2 expression was positively correlated with RFS in breast cancer patients (HR=0.667, 0.725; 95%CI: 0.458-0.972, 0.653-0.804; both P<0.050). (2) GSEA results suggested that NR3C2 was mostly involved in JAK-STAT and TGF-β signaling pathways related to immunity. Correlation analysis found that the mRNA expression of NR3C2 was significantly correlated with 19 immune cells and 43 immunomodulator genes (all P<0.050). (3) The 43 NR3C2-related immunomodulator genes were included in Cox regression to construct a prognostic model which composed of 13 immunomodulator genes with a risk cutoff value equal to 0.988. Survival analysis showed that in TCGA cohort and GSE42568 cohort, the RFS in high-risk group was significantly lower than that in low-risk group (HR=2.682, 2.389; 95%CI: 1.839-3.910, 1.343-4.248; both P<0.010). ROC indicated that the AUC was 0.758 and 0.618 in TCGA cohort and GSE42568 cohort, respectively (95%CI: 0.662-0.857, 0.545-0.758; sensitivity: 0.833, 0.538; specificity: 0.614, 0.714; both P<0.010). Multivariate Cox regression showed that the risk score of this model could serve as an independent prognostic factor for breast cancer in TCGA cohort and GSE42568 cohort (HR=1.259, 1.163; 95%CI: 1.187-1.336, 1.068-1.266; both P<0.001). (4) The nomogram constructed based on the pathological stage and risk value could predict the 3-year, 5-year and 8-year RFS of breast cancer patients. The calibration curve suggested that it has good predictive accuracy and tAUC indicated that it is superior to pathological stage and a prognostic model. (5) Western blot analysis showed that the protein expression of NR3C2 was significantly decreased in breast cancer tissues.

Conclusion

NR3C2 is a potential immunotherapeutic target and prognostic biomarker in breast cancer patients.

表1 TCGA队列中1 019例乳腺癌患者临床病理特征
表2 GSE42568队列中104例乳腺癌患者临床病理特征
图1 NR3C2基因表达量不同的乳腺癌患者的无复发生存分析 a、b图分别所示在TCGA队列及Kaplan-Meier plotter队列中NR3C2高/低表达乳腺癌患者的无复发生存曲线注:NR3C2基因高表达组与低表达组比较,HR=0.667、0.725,95%CI:0.458~0.972、0.653~0.804,P均<0.050
表3 TCGA数据库中1 019例乳腺癌样本的GSEA结果
图2 TCGA数据库中1 019例乳腺癌样本的单样本基因集富集分析结果 a、b图分别表示免疫细胞、免疫调节基因与NR3C2 mRNA表达量之间的相关性
图3 TCGA队列中高风险组与低风险组乳腺癌患者的无复发生存曲线比较注:高风险组与低风险组比较,HR=2.682,95%CI: 1.839~3.910,P<0.001
图4 乳腺癌预后模型在TCGA队列中的ROC注:根据风险值绘制1年时间点的ROC,95%CI:0.662~0.857,P<0.001;ROC为受试者操作特征曲线
图5 GSE42568队列中高风险组与低风险组乳腺癌患者的无复发生存曲线比较注:高风险组与低风险组比较,HR=2.389,95%CI:1.343~4.248,P=0.003
图6 乳腺癌预后模型在GSE42568队列中的ROC注:根据风险值绘制1年时间点的ROC,95%CI:0.545~0.758,P=0.008;ROC为受试者操作特征曲线
表4 乳腺癌患者NR3C2和免疫调节基因之间相关性的多元逐步Cox回归分析结果
表5 TCGA队列中1 019例乳腺癌患者无复发生存的多因素Cox回归结果
表6 GSE42568队列中104例乳腺癌患者无复发生存的多因素Cox回归结果
图7 基于临床分期和风险值构建的TCGA队列中1 019例乳腺癌患者列线图注:各协变量的预测概率映射到图形中从0到100分的刻度,各协变量累积的总分数对应患者3、5、8年的无复发生存率
图8 TCGA队列中1 019例乳腺癌患者生存率预测列线图在3、5、8年时间点的校准曲线注:横轴代表列线图的预测生存率,纵轴代表实际生存率,对角线(虚线)表示两者完全一致,观察指标为RFS
图9 TCGA队列中1 019例乳腺癌患者的临床分期、预后模型和列线图在不同时间点的曲线下面积比较
图10 Western blot实验检测NR3C2基因的蛋白表达情况注:GAPDH为内参照物;N为癌旁组织;T为乳腺癌组织
[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[2]
Savas P, Salgado R, Denkert C, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic [J]. Nat Rev Clin Oncol, 2016, 13(4): 228-241.
[3]
Kwapisz D. Pembrolizumab and atezolizumab in triple-negative breast cancer [J]. Cancer Immunol Immunother, 2021, 70(3): 607-617.
[4]
Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers [J]. Nat Med, 2015, 21(8): 938-945.
[5]
Horisberger JD, Rossier BC. Aldosterone regulation of gene transcription leading to control of ion transport [J]. Hypertension, 1992, 19(3): 221-227.
[6]
Guo JY, Wang YK, Lv B, et al. miR-454 performs tumor-promoting effects in oral squamous cell carcinoma via reducing NR3C2 [J]. J Oral Pathol Med, 2020, 49(4): 286-293.
[7]
Zhao Z, Zhang M, Duan X, et al. Low NR3C2 levels correlate with aggressive features and poor prognosis in non-distant metastatic clear-cell renal cell carcinoma [J]. J Cell Physiol, 2018, 233(10): 6825-6838.
[8]
Tiberio L, Nascimbeni R, Villanacci V, et al. The decrease of mineralcorticoid receptor drives angiogenic pathways in colorectal cancer [J]. PLoS One, 2013, 8(3): e59410.
[9]
Yang S, He P, Wang J, et al. A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2 [J]. Cancer Res, 2016, 76(13): 3838-3850.
[10]
Zhang DL, Qu LW, Ma L, et al. Genome-wide identification of transcription factors that are critical to non-small cell lung cancer [J]. Cancer Lett, 2018, 434: 132-143.
[11]
Peng Y, Xi X, Li J, et al. miR-301b and NR3C2 co-regulate cells malignant properties and have the potential to be independent prognostic factors in breast cancer [J]. J Biochem Mol Toxicol, 2021, 35(2): e22650.
[12]
Bauer D, Mazzio E, Soliman KFA. Whole transcriptomic analysis of apigenin on TNFα immuno-activated MDA-MB-231 breast cancer cells [J]. Cancer Genomics Proteomics, 2019, 16(6): 421-431.
[13]
Györffy B, Lanczky A, Eklund AC, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients [J]. Breast Cancer Res Treat, 2010, 123(3): 725-731.
[14]
Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer [J]. Immunity, 2013, 39(4): 782-795.
[15]
Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade [J]. Cell Rep, 2017, 18(1): 248-262.
[16]
Choi I, Wells BJ, Yu C, et al. An empirical approach to model selection through validation for censored survival data [J]. J Biomed Inform, 2011, 44(4): 595-606.
[17]
Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, et al. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis [J]. PLoS One, 2013, 8(9): e74250.
[18]
Iasonos A, Schrag D, Raj GV, et al. How to build and interpret a nomogram for cancer prognosis [J]. J Clin Oncol, 2008, 26(8): 1364-1370.
[19]
Lu J, Hu F, Zhou Y. NR3C2-related transcriptome profile and clinical outcome in invasive breast carcinoma [J]. Biomed Res Int, 2021, 2021: 9 025 481.
[20]
Fan Y, Li Y, Zhu Y, et al. miR-301b-3p regulates breast cancer cell proliferation, migration, and invasion by targeting NR3C2 [J]. J Oncol, 2021, 2021: 8 810 517.
[21]
Nishida N. Role of oncogenic pathways on the cancer immunosuppressive microenvironment and its clinical implications in hepatocellular carcinoma [J]. Cancers (Basel), 2021, 13(15): 3666.
[22]
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy [J]. Nat Rev Clin Oncol, 2021, 18(1): 9-34.
[23]
Do HTT, Lee CH, Cho J. Chemokines and their receptors: multifaceted roles in cancer progression and potential value as cancer prognostic markers [J]. Cancers (Basel), 2020, 12(2): 287.
[24]
Zhuang G, Zeng Y, Tang Q, et al. Identifying M1 macrophage-related genes through a co-expression network to construct a four-gene risk-scoring model for predicting thyroid cancer prognosis [J]. Front Genet, 2020, 11: 591 079.
[25]
Li B, Cui Y, Diehn M, et al. Development and validation of an individualized immune prognostic signature in early-stage nonsquamous non-small cell lung cancer [J]. JAMA Oncol, 2017, 3(11): 1529-1537.
[26]
Zhu J, Liu Y, Ao H, et al. Comprehensive analysis of the immune implication of ACK1 gene in non-small cell lung cancer [J]. Front Oncol, 2020, 10: 1132.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 应康, 杨璨莹, 刘凤珍, 陈丽丽, 刘燕娜. 左心室心肌应变对无症状重度主动脉瓣狭窄患者的预后评估价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 581-587.
[3] 武壮壮, 张晓娟, 史泽洪, 史瑶, 原韶玲. 超声联合乳腺X线摄影及PR、Her-2预测高级别与中低级别乳腺导管原位癌的价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 631-635.
[4] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[5] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[6] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[7] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[8] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[9] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[10] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[11] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[12] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要