切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (06) : 373 -376. doi: 10.3877/cma.j.issn.1674-0807.2021.06.007

综述

表没食子儿茶素没食子酸酯在乳腺癌中的研究进展
潘茜茜1, 包凝1, 韩继广1,()   
  1. 1. 150081 哈尔滨医科大学附属肿瘤医院乳腺外四科
  • 收稿日期:2021-01-04 出版日期:2021-12-01
  • 通信作者: 韩继广
  • 基金资助:
    吴阶平医学基金会资助项目(320.6750.18215)

Application of epigallocatechin gallic acid ester in breast cancer

Qianqian Pan1, Ning Bao1, Jiguang Han1()   

  • Received:2021-01-04 Published:2021-12-01
  • Corresponding author: Jiguang Han
引用本文:

潘茜茜, 包凝, 韩继广. 表没食子儿茶素没食子酸酯在乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2021, 15(06): 373-376.

Qianqian Pan, Ning Bao, Jiguang Han. Application of epigallocatechin gallic acid ester in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(06): 373-376.

茶是仅次于水的最常见饮品,其中绿茶以其抗癌和抗炎特性而闻名,这与其富含茶多酚类活性物质密切相关。儿茶素是绿茶中主要的多酚类化学物质,包括表儿茶素、表没食子儿茶素、表儿茶素没食子酸酯和表没食子儿茶素没食子酸酯(EGCG)。其中EGCG是儿茶素中含量最多、活性最高且被研究最广泛的物质。EGCG对多种癌症均有预防和治疗作用,笔者主要介绍近5年来有关EGCG抑制乳腺癌的研究进展。

[1]
Zeng L, Yan J, Luo L,et al. Preparation and characterization of (-)-epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells[J]. Sci Rep201728(7):45 521.
[2]
Kushi LH, Doyle C, Mccullough M,et al. American Cancer Society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity[J]. CA Cancer J Clin201262(1): 30-67.
[3]
Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants: progress and promise[J]. Antioxid Redox Signal200810(3):475-510.
[4]
Mukherjee S, Ghosh S, Das D,et al. Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection--synthesis,characterization and in vitro evaluation[J]. J Nutr Biochem201526(11): 1283-1297.
[5]
Xu P, Yan F, Zhao Y,et al. Green tea polyphenol EGCG attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model[J]. Nutrients202012(4): 1042.
[6]
Zan L, Chen Q, Zhang L,et al. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25[J]. Bioengineered201910(1): 374-382.
[7]
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins[J]. Int J Mol Sci202021(5): 1744.
[8]
Li Y, Buckhaults P, Cui X,et al. Combinatorial epigenetic mechanisms and efficacy of early breast cancer inhibition by nutritive botanicals[J]. Epigenomics20168(8): 1019-1037.
[9]
Steed KL, Jordan HR, Tollefsbol TO. SAHA and EGCG promote apoptosis in triple-negative breast cancer cells,possibly through the modulation of cIAP2[J]. Anticancer Res202040(1): 9-26.
[10]
Song X, Zhang M, Chen L,et al. Bioinformatic prediction of possible targets and mechanisms of action of the green tea compound epigallocatechin-3-gallate against breast cancer[J]. Front Mol Biosci20174: 43.
[11]
Hartrick CT, Rozek RJ. Tapentadol in pain management: a μ-opioid receptor agonist and noradrenaline reuptake inhibitor[J]. CNS Drugs201125(5): 359-370.
[12]
Bimonte S, Cascella M, Barbieri A,et al. Shining a light on the effects of the combination of (-)-epigallocatechin-3-gallate and tapentadol on the growth of human triple-negative breast cancer cells[J]. In Vivo201933(5): 1463-1468.
[13]
Moradzadeh M, Hosseini A, Erfanian S,et al. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and telomerase[J]. Pharmacol Rep201769(5): 924-928.
[14]
Lin YC, Lee YC, Li LH,et al. Tumor suppressor SCUBE2 inhibits breast-cancer cell migration and invasion through the reversal of epithelial-mesenchymal transition[J]. J Cell Sci2014127(Pt 1): 85-100.
[15]
Sheng J, Shi W, Guo H,et al. The inhibitory effect of (-)-epigallocatechin-3-gallate on breast cancer progression via reducing methylation and DNMT activity[J]. Molecules201924(16): 2899.
[16]
Wang Z, Zhang X, Shen P,et al. A variant of estrogen receptor-{alpha},hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling[J]. Proc Natl Acad Sci USA2006103(24): 9063-9068.
[17]
Shi L, Dong B, Li Z,et al. Expression of ER-{alpha}36,a novel variant of estrogen receptor {alpha},and resistance to tamoxifen treatment in breast cancer[J]. J Clin Oncol200927(21): 3423-3429.
[18]
Pan X, Zhao B, Song Z,et al. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells[J]. J Pharmacol Sci2016130(2): 85-93.
[19]
Li Y, Meeran SM, Tollefsbol TO. Combinatorial bioactive botanicals re-sensitize tamoxifen treatment in ER-negative breast cancer via epigenetic reactivation of ERα expression[J]. Sci Rep20177(1): 9345.
[20]
Shin S, Kim MK, Jung W,et al. (-)-Epigallocatechin gallate derivatives reduce the expression of both urokinase plasminogen activator and plasminogen activator inhibitor-1 to inhibit migration,adhesion,and invasion of MDA-MB-231 cells[J]. Phytother Res201832(10): 2086-2096.
[21]
Riley RS, June CH, Langer R,et al. Delivery technologies for cancer immunotherapy[J]. Nat Rev Drug Discov201918(3): 175-196.
[22]
Kumar V, Patel S, Tcyganov E,et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment[J]. Trends Immunol201637(3): 208-220.
[23]
Parker KH, Beury DW, Ostrand-Rosenberg S. Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment[J]. Adv Cancer Res 2015128: 95-139.
[24]
Corzo CA, Cotter M, Cheng P,et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells[J]. J Immunol2009182(9): 5693-5701.
[25]
Chen J, Ye Y, Liu P,et al. Suppression of T cells by myeloid-derived suppressor cells in cancer[J]. Hum Immunol201778(2): 113-119.
[26]
Zhao W, Mackenzie GG, Murray OT,et al. Phosphoaspirin (MDC-43),a novel benzyl ester of aspirin,inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect[J]. Carcinogenesis200930(3): 512-519.
[27]
Wei R, Mao L, Xu P,et al. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models[J]. Food Funct20189(11): 5682-5696.
[28]
Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression[J]. Nature2006441(7092): 437-443.
[29]
Deng D, Xu C, Sun P,et al. Crystal structure of the human glucose transporter GLUT1[J]. Nature2014510(7503): 121-125.
[30]
Mulliez T, Veldeman L, Van Greveling A,et al. Hypofractionated whole breast irradiation for patients with large breasts: a randomized trial comparing prone and supine positions[J]. Radiother Oncol2013108(2): 203-208.
[31]
Zhu W, Jia L, Chen G,et al. Epigallocatechin-3-gallate ameliorates radiation-induced acute skin damage in breast cancer patients undergoing adjuvant radiotherapy[J]. Oncotarget20167(30): 48 607-48 613.
[32]
Zhao H, Zhu W, Jia L,et al. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy[J]. Br J Radiol201689(1058): 2015 0665.
[33]
Radhakrishnan R, Pooja D, Kulhari H,et al. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment[J]. Chem Phys Lipids2019224: 104 770.
[34]
Radhakrishnan R, Kulhari H, Pooja D,et al. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer[J]. Chem Phys Lipids2016198: 51-60.
[35]
Yi Z, Chen X, Chen G,et al. General nanomedicine platform by solvent-mediated disassembly/reassembly of scalable natural polyphenol colloidal spheres[J]. ACS Appl Mater Interfaces202012(34): 37 914-37 928.
[36]
Liang T, Yao Z, Ding J,et al. Cascaded aptamers-governed multistage drug-delivery system based on biodegradable envelope-type nanovehicle for targeted therapy of HER2-overexpressing breast cancer[J]. ACS Appl Mater Interfaces201810(40): 34 050-34 059.
[37]
Samavat H, Ursin G, Emory TH,et al. A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer[J]. Cancer Prev Res(Phila)201710(12): 710-718.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?