切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (06) : 373 -376. doi: 10.3877/cma.j.issn.1674-0807.2021.06.007

综述

表没食子儿茶素没食子酸酯在乳腺癌中的研究进展
潘茜茜1, 包凝1, 韩继广1,()   
  1. 1. 150081 哈尔滨医科大学附属肿瘤医院乳腺外四科
  • 收稿日期:2021-01-04 出版日期:2021-12-01
  • 通信作者: 韩继广
  • 基金资助:
    吴阶平医学基金会资助项目(320.6750.18215)

Application of epigallocatechin gallic acid ester in breast cancer

Qianqian Pan1, Ning Bao1, Jiguang Han1()   

  • Received:2021-01-04 Published:2021-12-01
  • Corresponding author: Jiguang Han
引用本文:

潘茜茜, 包凝, 韩继广. 表没食子儿茶素没食子酸酯在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2021, 15(06): 373-376.

Qianqian Pan, Ning Bao, Jiguang Han. Application of epigallocatechin gallic acid ester in breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(06): 373-376.

茶是仅次于水的最常见饮品,其中绿茶以其抗癌和抗炎特性而闻名,这与其富含茶多酚类活性物质密切相关。儿茶素是绿茶中主要的多酚类化学物质,包括表儿茶素、表没食子儿茶素、表儿茶素没食子酸酯和表没食子儿茶素没食子酸酯(EGCG)。其中EGCG是儿茶素中含量最多、活性最高且被研究最广泛的物质。EGCG对多种癌症均有预防和治疗作用,笔者主要介绍近5年来有关EGCG抑制乳腺癌的研究进展。

[1]
Zeng L, Yan J, Luo L,et al. Preparation and characterization of (-)-epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells[J]. Sci Rep201728(7):45 521.
[2]
Kushi LH, Doyle C, Mccullough M,et al. American Cancer Society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity[J]. CA Cancer J Clin201262(1): 30-67.
[3]
Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants: progress and promise[J]. Antioxid Redox Signal200810(3):475-510.
[4]
Mukherjee S, Ghosh S, Das D,et al. Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection--synthesis,characterization and in vitro evaluation[J]. J Nutr Biochem201526(11): 1283-1297.
[5]
Xu P, Yan F, Zhao Y,et al. Green tea polyphenol EGCG attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model[J]. Nutrients202012(4): 1042.
[6]
Zan L, Chen Q, Zhang L,et al. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25[J]. Bioengineered201910(1): 374-382.
[7]
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins[J]. Int J Mol Sci202021(5): 1744.
[8]
Li Y, Buckhaults P, Cui X,et al. Combinatorial epigenetic mechanisms and efficacy of early breast cancer inhibition by nutritive botanicals[J]. Epigenomics20168(8): 1019-1037.
[9]
Steed KL, Jordan HR, Tollefsbol TO. SAHA and EGCG promote apoptosis in triple-negative breast cancer cells,possibly through the modulation of cIAP2[J]. Anticancer Res202040(1): 9-26.
[10]
Song X, Zhang M, Chen L,et al. Bioinformatic prediction of possible targets and mechanisms of action of the green tea compound epigallocatechin-3-gallate against breast cancer[J]. Front Mol Biosci20174: 43.
[11]
Hartrick CT, Rozek RJ. Tapentadol in pain management: a μ-opioid receptor agonist and noradrenaline reuptake inhibitor[J]. CNS Drugs201125(5): 359-370.
[12]
Bimonte S, Cascella M, Barbieri A,et al. Shining a light on the effects of the combination of (-)-epigallocatechin-3-gallate and tapentadol on the growth of human triple-negative breast cancer cells[J]. In Vivo201933(5): 1463-1468.
[13]
Moradzadeh M, Hosseini A, Erfanian S,et al. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and telomerase[J]. Pharmacol Rep201769(5): 924-928.
[14]
Lin YC, Lee YC, Li LH,et al. Tumor suppressor SCUBE2 inhibits breast-cancer cell migration and invasion through the reversal of epithelial-mesenchymal transition[J]. J Cell Sci2014127(Pt 1): 85-100.
[15]
Sheng J, Shi W, Guo H,et al. The inhibitory effect of (-)-epigallocatechin-3-gallate on breast cancer progression via reducing methylation and DNMT activity[J]. Molecules201924(16): 2899.
[16]
Wang Z, Zhang X, Shen P,et al. A variant of estrogen receptor-{alpha},hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling[J]. Proc Natl Acad Sci USA2006103(24): 9063-9068.
[17]
Shi L, Dong B, Li Z,et al. Expression of ER-{alpha}36,a novel variant of estrogen receptor {alpha},and resistance to tamoxifen treatment in breast cancer[J]. J Clin Oncol200927(21): 3423-3429.
[18]
Pan X, Zhao B, Song Z,et al. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells[J]. J Pharmacol Sci2016130(2): 85-93.
[19]
Li Y, Meeran SM, Tollefsbol TO. Combinatorial bioactive botanicals re-sensitize tamoxifen treatment in ER-negative breast cancer via epigenetic reactivation of ERα expression[J]. Sci Rep20177(1): 9345.
[20]
Shin S, Kim MK, Jung W,et al. (-)-Epigallocatechin gallate derivatives reduce the expression of both urokinase plasminogen activator and plasminogen activator inhibitor-1 to inhibit migration,adhesion,and invasion of MDA-MB-231 cells[J]. Phytother Res201832(10): 2086-2096.
[21]
Riley RS, June CH, Langer R,et al. Delivery technologies for cancer immunotherapy[J]. Nat Rev Drug Discov201918(3): 175-196.
[22]
Kumar V, Patel S, Tcyganov E,et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment[J]. Trends Immunol201637(3): 208-220.
[23]
Parker KH, Beury DW, Ostrand-Rosenberg S. Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment[J]. Adv Cancer Res 2015128: 95-139.
[24]
Corzo CA, Cotter M, Cheng P,et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells[J]. J Immunol2009182(9): 5693-5701.
[25]
Chen J, Ye Y, Liu P,et al. Suppression of T cells by myeloid-derived suppressor cells in cancer[J]. Hum Immunol201778(2): 113-119.
[26]
Zhao W, Mackenzie GG, Murray OT,et al. Phosphoaspirin (MDC-43),a novel benzyl ester of aspirin,inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect[J]. Carcinogenesis200930(3): 512-519.
[27]
Wei R, Mao L, Xu P,et al. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models[J]. Food Funct20189(11): 5682-5696.
[28]
Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression[J]. Nature2006441(7092): 437-443.
[29]
Deng D, Xu C, Sun P,et al. Crystal structure of the human glucose transporter GLUT1[J]. Nature2014510(7503): 121-125.
[30]
Mulliez T, Veldeman L, Van Greveling A,et al. Hypofractionated whole breast irradiation for patients with large breasts: a randomized trial comparing prone and supine positions[J]. Radiother Oncol2013108(2): 203-208.
[31]
Zhu W, Jia L, Chen G,et al. Epigallocatechin-3-gallate ameliorates radiation-induced acute skin damage in breast cancer patients undergoing adjuvant radiotherapy[J]. Oncotarget20167(30): 48 607-48 613.
[32]
Zhao H, Zhu W, Jia L,et al. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy[J]. Br J Radiol201689(1058): 2015 0665.
[33]
Radhakrishnan R, Pooja D, Kulhari H,et al. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment[J]. Chem Phys Lipids2019224: 104 770.
[34]
Radhakrishnan R, Kulhari H, Pooja D,et al. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer[J]. Chem Phys Lipids2016198: 51-60.
[35]
Yi Z, Chen X, Chen G,et al. General nanomedicine platform by solvent-mediated disassembly/reassembly of scalable natural polyphenol colloidal spheres[J]. ACS Appl Mater Interfaces202012(34): 37 914-37 928.
[36]
Liang T, Yao Z, Ding J,et al. Cascaded aptamers-governed multistage drug-delivery system based on biodegradable envelope-type nanovehicle for targeted therapy of HER2-overexpressing breast cancer[J]. ACS Appl Mater Interfaces201810(40): 34 050-34 059.
[37]
Samavat H, Ursin G, Emory TH,et al. A randomized controlled trial of green tea extract supplementation and mammographic density in postmenopausal women at increased risk of breast cancer[J]. Cancer Prev Res(Phila)201710(12): 710-718.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要