切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 270 -275. doi: 10.3877/cma.j.issn.1674-0807.2018.05.003

所属专题: 文献

论著

乳腺癌患者外周血中内皮祖细胞检测的临床意义
王佳铭1, 魏刚1,(), 马震2, 王长青1, 严时3, 刘岩3, 李慧3   
  1. 1. 130012 长春,吉林省肿瘤医院乳腺肿瘤外科
    2. 130012 长春,吉林省人民医院乳腺科
    3. 130012 长春,吉林省肿瘤医院肿瘤转化医学实验室
  • 收稿日期:2016-09-07 出版日期:2018-10-01
  • 通信作者: 魏刚
  • 基金资助:
    吉林省卫生厅课题(2017J027,2015Z095); 吉林省科技厅课题(20140101170JC)

Determination of endothelial progenitor cells in peripheral blood of breast cancer patients

Jiaming Wang1, Gang Wei1,(), Zhen Ma2, Changqing Wang1, Shi Yan3, Yan Liu3, Hui Li3   

  1. 1. Department of Breast Oncologic Surgery, Jilin Cancer Hospital, Changchun 130012, China
    2. Department of Breast Diseases, People’s Hospital of Jilin Province, Changchun 130012, China
    3. Translational Research Laboratory of Oncology, Jilin Cancer Hospital, Changchun 130012, China
  • Received:2016-09-07 Published:2018-10-01
  • Corresponding author: Gang Wei
  • About author:
    Corresponding author: Wei Gang, Email:
引用本文:

王佳铭, 魏刚, 马震, 王长青, 严时, 刘岩, 李慧. 乳腺癌患者外周血中内皮祖细胞检测的临床意义[J]. 中华乳腺病杂志(电子版), 2018, 12(05): 270-275.

Jiaming Wang, Gang Wei, Zhen Ma, Changqing Wang, Shi Yan, Yan Liu, Hui Li. Determination of endothelial progenitor cells in peripheral blood of breast cancer patients[J]. Chinese Journal of Breast Disease(Electronic Edition), 2018, 12(05): 270-275.

目的

探讨乳腺癌患者外周血中内皮祖细胞(EPCs)检测的临床意义。

方法

采用前瞻性研究方法,收集2014年3月至2015年3月吉林省肿瘤医院收治的、病理学证实的70例浸润性乳腺导管癌患者、61例乳腺纤维腺瘤患者和68名健康人的外周血,利用流式细胞术检测EPCs[CD34、CD133和血管内皮生长因子受体(VEGFR)-2阳性细胞]水平。采用Fisher确切概率检验和Kruskal-Wallis H检验比较3组间EPCs阳性率及其表面标志物CD34、CD133和VEGFR-2表达量的差异,并用Fisher确切概率检验分析乳腺癌患者EPCs阳性率与临床病理特征的关系;采用t检验比较不同临床分期和不同淋巴结转移状态患者间EPCs表面标志物CD34、CD133和VEGFR-2表达量的差异。

结果

在乳腺癌患者、乳腺纤维腺瘤患者和健康人外周血中,EPCs阳性率及其表面标志物CD34、CD133和VEGFR-2表达量的差异均有统计学意义(χ2=12.811,P<0.001;F=15.275,P<0.001);健康人及乳腺纤维腺瘤组均未检测到EPCs,组间两两比较显示,EPCs表面标志物CD34、CD133和VEGFR-2在乳腺癌患者外周血中的表达量[M(P25P75):0.006%(0.003%~6.008%)]明显高于健康人及乳腺纤维腺瘤患者(P=0.002、0.003),乳腺癌组EPCs阳性率也显著高于健康人及乳腺纤维腺瘤患者[11.4%(8/70)分别比0(0/68)、0(0/61),P=0.006、0.007]。但EPCs阳性率与乳腺癌患者的年龄、ER、PR和HER-2状态均无关(P均>0.050)。进一步分析EPCs阳性的8例乳腺癌患者临床资料后发现,Ⅰ期患者(n=4)外周血中EPCs表面标志物CD34、CD133和VEGFR-2的表达量明显低于Ⅱ~Ⅳ期患者(n=4)[(0.300±0.162)%比(1.130±0.318)%,t=4.640,P=0.004],而淋巴结转移者(n=4)EPCs表面标志物CD34、CD133和VEGFR-2的表达量明显高于未转移者(n=4)[(1.062±0.424)%比(0.370±0.287)%,t=2.700,P=0.040]。

结论

乳腺癌患者外周血中EPCs表面标志CD34、CD133和VEGFR-2表达水平较高,其可能是一种潜在的生物标志物和治疗靶点。

Objective

To investigate the clinical significance of endothelial progenitor cells (EPCs) in peripheral blood of breast cancer patients.

Methods

Peripheral blood from healthy volunteers (control group, n=68), breast fibroadenoma patients (benign group, n=61) and patients with invasive ductal breast cancer (n=70) in Jilin Cancer Hospital from March 2014 to March 2015 were collected for a prospective study. The concentration of EPCs (marked by CD34, CD133 and VEGFR-2 positive) was determined by flow cytometry. Fisher’s exact probability test and Kruskal-Wallis H test were used to compare the positive rate of EPCs and the expression of CD34, CD133 and VEGFR-2 among three groups. Fisher’s exact probability test was used to analyze the relationship between the positive rate of EPCs and clinicopathological features in breast cancer patients. The expression of CD34, CD133 and VEGFR-2 (surface markers of EPCs) was compared in the patients with different clinical stages and lymph node metastasis status by t test.

Results

The positive rate of EPCs and the expression of CD34, CD133 and VEGFR-2 presented a significant difference among three groups (χ2=12.811, P<0.001; F=15.275, P<0.001). EPCs were not detected in control group and benign group. The expression of CD34, CD133 and VEGFR-2 in breast cancer group was 0.006%(0.003%-0.008%)[M(P25-P75)], significantly higher than that in control group or benign group (P=0.002 and P=0.003). The positive rate of EPCs was significantly higher than that in control group or benign group [11.4% (8/70) vs 0 (0/68), P=0.006; 11.4% (8/70) vs 0 (0/61), P=0.007]. The positive rate of EPCs was not correlated with patient age, ER, PR and HER-2 status (all P>0.05). In eight breast cancer patients with EPCs positive, the expression of CD34, CD133 and VEGFR-2 in stageⅠbreast cancer was significantly lower than that in stage Ⅱ-Ⅳ breast cancer [(0.300±0.162)% vs (1.130±0.318)%, t=4.640, P=0.004), and the expression of CD34, CD133 and VEGFR-2 in patients with lymph node metastasis was significantly higher than that in patients without [(1.062±0.424)% vs (0.370±0.287)%, t=2.700, P=0.040].

Conclusion

CD34, CD133 and VEGFR-2(surface markers of EPCs) have high expression in peripheral blood of breast cancer patients, so EPCs might serve as a potential biomarker and a therapeutic target.

图1 流式细胞术检测脐带血中单个核细胞群的分布情况 a图所示脐带血中单个核细胞群;b图所示单个核细胞群中的CD45细胞(白细胞)
图2 流式细胞术检测脐带血中EPCs分布情况 a和b图分别为CD309 PE和CD133 APC同型阴性对照抗体表达图;c图为脐带血单核细胞群中CD34和CD309的表达;d图为脐带血单核细胞群中CD133在R3门内细胞中的表达
图3 乳腺癌患者、乳腺纤维腺瘤患者及健康人外周血中EPCs表面标志物CD34、CD133、VEGFR-2(CD309)的表达 a、b、c图,d、e、f图以及g、h、i图分别为健康人、乳腺纤维腺瘤患者和乳腺癌患者外周血中EPCs细胞表面标志物CD34、VEGFR-2和CD133的表达
表1 乳腺癌患者EPCs阳性率与临床病理特征的关系
表2 8例EPCs表面标志物CD34、CD133和VEGFR-2阳性表达的乳腺癌患者临床病理特征
[1]
王殊. 2017年美国临床肿瘤学会年会乳腺癌研究进展回顾:加减均是精准路上的一步[J/CD]. 中华乳腺病杂志(电子版), 2017, 11(6): 321-324.
[2]
Estes ML,Mund JA,Mead LE, et al. Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential[J]. Cytometry A, 2010, 77(9): 831-839.
[3]
Stou BR,Migliorini C,Kadambi A, et al. A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tu-mors: implications for antiangiogenic tihrapy [J]. Blood, 2003, 102(7): 2555-2561.
[4]
厉倩,洪茂,谭龙益, 等. 循环内皮祖细胞计数在肝细胞肝癌中的临床意义[J]. 中国肿瘤生物治疗杂志, 2011, 18(5): 548-551.
[5]
Nowak K,Rafat N,Belle S, et al. Circulating endothelial progenitor cells are increased in human lung cancer and correlate with stage of disease [J]. Eur J Cardiothorac Surg, 2010, 37(4): 758-763.
[6]
Vizio B,Novarino A,Giacobino A, et al. Pilot study to relate clinical outcome in pancreatic carcinoma and angiogenic plasma factors/circulating mature/progenitor endothelial cells: Preliminary results [J]. Cancer Sci, 2010, 101(11): 2448-2454.
[7]
许良中. 乳腺病理学[M]. 上海: 上海医科大学出版社, 1999: 359.
[8]
Asahara T,Murohara T,Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science, 1997, 275(5302): 964-967.
[9]
Hristor M,Erl W,Weber PC, et al. Endothelial progenitor cells: isolation and characterization [J]. Trends Cardiovasc Med, 2003, 13(5): 201-206.
[10]
Fadini GP,Coracina A,Baesso I, et al. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population [J]. Stroke, 2006, 37(9): 2277-2282.
[11]
Liu P,Zhou B,Gu D, et al. Endothelial progenitor cell therapy in atherosclerosis: a double-edged sword? [J]. Ageing Res Rev, 2009, 8(2): 83-93.
[12]
Cerezo AB,Hornedo-Ortega R,álvarez-Fernández MA, et al. Inhibition of VEGF-induced VEGFR-2 activation and HUVEC migration by melatonin and other bioactive indolic compounds [J]. Nutrients, 2017, 9(3): E249.
[13]
周斌,刘世伟,高国璇, 等. 2016年NCCN乳腺癌临床实践指南(第1版)更新与解读[J]. 中国实用外科杂志, 2016, 36(10): 1066-1072.
[14]
Rafii S,Lyden D,Benezra R, et al. Vascular and hematopoietic stem cells: novel targets for anti-angiogenesis therapy? [J]. Nat Rev Cancer, 2002, 2(11): 826- 835.
[15]
Hagensen MK,Shim J,Thim T, et al. Circulating endothelial progenitor cells do not contribute to plaque endothelium in murine atherosclerosis [J]. Circulation, 2010, 121(7): 898-905.
[16]
Steurer M,Kern J,Zitt M, et al. Quantification of circulating endothelial and progenitor cells: comparison of quantitative PCR and four-channel flow cytometry [J]. BMC Res Notes, 2008, 1: 71.
[17]
Crisa L,Cirulli V,Smith K, et a1. Human cord blood progenitors sustain thymic T-cell development and a novel form of angiogenesis [J]. Blood, 1999, 94(11): 3928-3940.
[18]
Timmermans F,Plum J,Yöder MC, et al. Endothelial progenitor cells: identity defined? [J]. J Cell Mol Med, 2009, 13(1): 87-102.
[19]
刘隽炜. 内皮祖细胞研究进展[J]. 心血管病学进展, 2011, 32(4): 528-531.
[20]
Yoder MC. Endothelial progenitor cell: a blood cell by many other names may serve similar functions[J]. J Mol Med (Berl), 2013, 91(3): 285-295.
[21]
Nowak K,Jachol N,Rafat N, et al. Alterations of circulating bone marrow-derived VEGFR-2+ progenitor cells in isolated limb perfusion with or without rhTNF-α[J]. Ann Surg Oncol, 2013, 20(11): 3694-3701.
[22]
Murohara T,Ikeda H,Duan J, et a1. Transplanted cord blood—derived endothelial precursor cells augment postnatal neovascularization [J]. J Clin Invest, 2000, 105(11): 1527-1536.
[23]
Yang B,Gu W,Peng B, et al. High level of circulating endothelial progenitor cells positively correlates with serum vascular endothelial growth in patients with renal cell carcinoma [J]. J Urol, 2012, 188(6): 2055-2061.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要