切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 263 -269. doi: 10.3877/cma.j.issn.1674-0807.2018.05.002

所属专题: 文献

论著

微RNA-3178和三羟异黄酮对三阴性乳腺癌细胞MDA-MB-231化疗敏感性的影响
陶静1, 陈列2, 孔鹏2, 周文斌2, 潘红2,(), 王水2   
  1. 1. 210031 南京市浦口医院普通外科
    2. 210029 南京医科大学第一附属医院乳腺外科
  • 收稿日期:2017-11-30 出版日期:2018-10-01
  • 通信作者: 潘红
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(81502286)

Effect of miRNA-3178 and genistein on chemosensitivity of triple negative breast cancer MDA-MB-231 cells

Jing Tao1, Lie Chen2, Peng Kong2, Wenbin Zhou2, Hong Pan2,(), Shui Wang2   

  1. 1. Department of General Surgery, Nanjing Pukou Hospital, Nanjing 210031, China
    2. Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
  • Received:2017-11-30 Published:2018-10-01
  • Corresponding author: Hong Pan
  • About author:
    Corresponding author: Pan Hong, Email:
    Tao Jing and Chen Lie contributed equally to the article.
引用本文:

陶静, 陈列, 孔鹏, 周文斌, 潘红, 王水. 微RNA-3178和三羟异黄酮对三阴性乳腺癌细胞MDA-MB-231化疗敏感性的影响[J]. 中华乳腺病杂志(电子版), 2018, 12(05): 263-269.

Jing Tao, Lie Chen, Peng Kong, Wenbin Zhou, Hong Pan, Shui Wang. Effect of miRNA-3178 and genistein on chemosensitivity of triple negative breast cancer MDA-MB-231 cells[J]. Chinese Journal of Breast Disease(Electronic Edition), 2018, 12(05): 263-269.

目的

探讨微RNA(miRNA)-3178和三羟异黄酮(genistein, Gen)在三阴性乳腺癌化疗敏感性中的作用。

方法

(1)分别用不同浓度的单药多柔比星(DOX, 0.125、0.250、0.500 μmol/L)、紫杉醇(PTX, 0.20、0.40、0.80 μmol/L)或联合Gen(2.5 μmol/L)处理MDA-MB-231细胞后,用MTT法检测细胞生长情况,并计算药物的IC50;(2)采用小分子干扰RNA(siRNA)干扰技术,将miRNA-3178小干扰片段瞬时转染MDA-MB-231细胞(miRNA-3178 siRNA组),以转染无义siRNA的细胞作为阴性对照组,再用real-time PCR法检测干扰结果,并分别用不同浓度DOX或PTX处理miRNA-3178 siRNA组及阴性对照组细胞,检测2组细胞间化疗药物敏感性的差异;(3)分别用0.250 μmol/L DOX、0.40 μmol/L PTX及2.5 μmol/L Gen处理MDA-MB-231细胞,再用real-time PCR法检测所有处理组与未处理组细胞miRNA-3178表达量的差异。2组细胞间生长抑制率及miRNA-3178表达量的比较采用t检验,多组细胞间miRNA-3178表达量的比较采用单因素方差分析,组间两两比较采用LSD法。

结果

(1)MTT结果显示:用0.125、0.250、0.500 μmol/L DOX单药处理MDA-MB-231细胞48 h后,细胞生长抑制率分别为16.7%±0.4%、25.9%±0.1%及44.9%±0.1%,联合2.5 μmol/L Gen处理后细胞生长抑制率均显著增加,分别为29.8%±0.3%、45.3%±0.4%及68.5%±0.4%,组间比较,差异均有统计学意义(t=38.12、61.57、82.70,P均< 0.001);用0.20、0.40、0.80 μmol/L PTX单药处理MDA-MB-231细胞48 h后,细胞生长抑制率分别为15.3%±0.3%、27.9%±0.5%及39.2%±0.1%,联合2.5 μmol/L Gen处理后细胞生长抑制率也显著增加,分别为32.7%±0.7%、48.3%±0.1%及63.3%±0.2%,组间比较,差异也均有统计学意义(t=34.41、58.63、213.91,P均<0.001)。DOX单独作用于细胞的IC50为1.230 μmol/L,联合2.5 μmol/L Gen后,IC50降低为0.440 μmol/L;PTX单独作用于细胞的IC50为0.64 μmol/L,联合2.5 μmol/L Gen后,IC50降低为0.27 μmol/L。(2)在不同浓度DOX(0.125、0.250、0.500 μmol/L)或PTX(0.20、0.40、0.80 μmol/L)的作用下,miRNA-3178 siRNA组MDA-MB-231细胞生长抑制率均明显低于其阴性对照组(转染无义siRNA)(12.3%±0.6%比16.7%±0.4%,21.2%±0.9%比25.9%±0.1%,27.2%±0.9%比44.9%±0.1%,t=8.99、7.33、27.34,P均<0.050;8.8%±0.5%比15.3%±0.3%,13.4%±1.1%比27.9%±0.5%,20.2%±0.9%比39.2%±0.1%,t=16.80、17.57、30.48,P均< 0.001)。(3)所有处理组及未处理组细胞间miRNA-3178表达量的差异具有统计学意义(F= 66.57,P<0.001)。组间两两比较显示,与未处理组相比,DOX(0.250 μmol/L)及PTX(0.40 μmol/L)处理组MDA-MB-231细胞miRNA-3178表达量无明显变化(P=0.611、0.235),而Gen(2.5 μmol/L)可显著增加MDA-MB-231细胞miRNA-3178的表达量(11.10±0.33比5.77±0.21,P<0.010)。

结论

Gen和miRNA-3178可能增加三阴性乳腺癌细胞MDA-MB-231对PTX和DOX化疗的敏感性。

Objective

To investigate the effect of miRNA-3178 and genistein on chemosensitivity of triple negative breast cancer MDA-MB-231 cells.

Methods

(1) MDA-MB-231 cells were treated by doxorubicin (0.125, 0.250, 0.500 μmol/L) and paclitaxel (0.20, 0.40, 0.80 μmol/L) alone or combined with genistein (2.5 μmol/L). MTT assay was performed to detect the cell growth. IC50 was also determined. (2) Using small interfering RNA (siRNA) technique, MDA-MB-231 cells were transfected with small interference fragment miRNA-3178 (miRNA-3178 siRNA group), and the cells transfected with nonsense siRNA served as negative control. The real-time PCR was used to detect the interference results. The miRNA-3178 siRNA group and negative control group were treated with different concentrations of doxorubicin or paclitaxel respectively to detect the chemosensitivity of cells between two groups. (3) MDA-MB-231 cells were treated with 0.250 μmol doxorubicin, 0.40 μmol/L paclitaxel and 2.5 μmol/L genistein, respectively, and the expression of miRNA-3178 in all treated and untreated groups was detected by real-time PCR. The t test was used to compare the growth inhibition rate of cells and miRNA-3178 expression between two groups. One-way analysis of variance was used to compare the expression of miRNA-3178 among multiple groups. The LSD method was used for pairwise comparison.

Results

(1) After being treated with 0.125, 0.250, 0.500 μmol/L doxorubicin for 48 h, the growth inhibition rate of MDA-MB-231 cells was 16.7%±0.4%, 25.9%±0.1% and 44.9%±0.1%, respectively. If combined with 2.5 μmol/L genistein, the growth inhibition rate was 29.8%±0.3%, 45.3%±0.4% and 68.5%±0.4%, respectively, indicating a significant difference (t=38.12, 61.57, 82.70, P<0.001). After MDA-MB-231 cells were treated with 0.20, 0.40, 0.80 μmol/L paclitaxel for 48 h, the growth inhibition rate was 15.3%±0.3%, 27.9%±0.5% and 39.2%±0.1% respectively. If combined with 2.5 μmol/L genistein, the growth inhibition rate was 32.7%±0.7%, 48.3%±0.1% and 63.3%±0.2%, respectively, indicating a significant difference (t=34.41, 58.63, 213.91, all P<0.001). The IC50 was 1.230 μmol/L when MDA-MB-231 cells were treated with doxorubicin alone, and decreased to 0.440 μmol/L if combined with 2.5 μmol/L genistein. The IC50 was 0.64 μmol/L when MDA-MB-231 cells were treated with paclitaxel alone, and decreased to 0.27 μmol/L if combined with 2.5 μmol/L genistein. (2) Under different concentrations of doxorubicin (0.125, 0.250, 0.500 μmol/L) or paclitaxel (0.20, 0.40, 0.80 μmol/L), the growth inhibition rate of MDA-MB-231 cells in miRNA-3178 siRNA group was significantly lower than that in negative control group (transfected with non-sense siRNA) (12.3%±0.6% vs 16.7% ± 0.4%, 21.2% ± 0.9% vs 25.9% ± 0.1%, 27.2% ± 0.9% vs 44.9% ± 0.1%, t=8.99, 7.33, 27.34, all P<0.050; 8.8%±0.5% vs 15.3%±0.3%, 13.4%±1.1% vs 27.9%±0.5%, 20.2%±0.9% vs 39.2%±0.1%, t=16.80, 17.57, 30.48, all P<0.001). (3) The difference in miRNA-3178 expression was statistically significant between treatment groups and untreated groups (F=66.57, P< 0.001). The results of pairwise comparison showed that compared with untreated group, the expression of miRNA-3178 in MDA-MB-231 cells treated with 0.40 μmol/L paclitaxel and 0.250 μmol/L doxorubicin treatment group presented no significant difference (P=0.611, 0.235), and the combination with 2.5 μmol/L genistein significantly increased the expression of miRNA-3178 in MDA-MB-231 cells (11.10±0.33 vs 5.77±0.21, P<0.010).

Conclusion

miRNA-3178 combined with genistein may increase the chemosensitivity of triple negative breast cancer MDA-MB-231 cells to paclitaxel and doxorubicin.

图1 Gen可增强DOX和PTX抑制MDA-MB-231细胞克隆形成的能力 a~f图分别为未处理组、PTX(0.40 μmol/L)处理组、DOX(0.250 μmol/L)处理组、Gen(2.5 μmol/L)处理组、Gen(2.5 μmol/L)+DOX(0.250 μmol/L)处理组和Gen(2.5 μmol/L)+PTX(0.40 μmol/L)处理组的细胞克隆形成情况
图2 下调MDA-MB-231细胞miRNA-3178表达后,DOX及PTX抑制细胞增殖的作用均减弱 a、b图分别显示不同浓度DOX或PTX抑制细胞增殖的情况
图3 单药Gen、DOX及PTX对MDA-MB-231细胞miRNA-3178表达量的影响
[1]
Albeck JG,Brugge JS. Uncovering a tumor suppressor for triple-negative breast cancers [J]. Cell, 2011, 144(5): 638-640.
[2]
Shah SP,Roth A,Goya R, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers [J]. Nature, 2012, 486(7403): 395-399.
[3]
Dent R,Trudeau M,Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence [J]. Clin Cancer Res, 2007, 13(15 Pt 1): 4429-4434.
[4]
梁璟慧,吴毓东,杨丽萍. 三阴性乳腺癌新辅助化疗的最新进展[J/CD]. 中华乳腺癌病杂志(电子版), 2016, 9(4): 270-274.
[5]
Burstein MD,Tsimelzon A,Poage GM, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer [J]. Clin Cancer Res, 2015, 21(7): 1688-1698.
[6]
Wu AH,Yu MC,Tseng CC, et al. Epidemiology of soy exposures and breast cancer risk [J]. Br J Cancer, 2008, 98(1): 9-14.
[7]
Li Z,Li J,Mo B, et al. Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via mitogen-activated protein kinase pathway [J]. Toxicol in Vitro, 2008, 22(7): 1749-1753.
[8]
Li Z,Li J,Mo B, et al. Genistein induces G2/M cell cycle arrest via stable activation of ERK1/2 pathway in MDA-MB-231 breast cancer cells [J]. Cell Biol Toxicol, 2008, 24(5): 401-409.
[9]
Phuah NH,Nagoor NH. Regulation of microRNAs by natural agents: new strategies in cancer therapies [J]. Biomed Res Int, 2014, 2014: 804 510.
[10]
唐倩倩,王云飞,聂勇战, 等. 贝母素乙对5种肿瘤细胞的化疗增敏作用研究[J]. 中国药房, 2017, 28(34): 4796-4800.
[11]
Siegel RL,Miller KD,Jemal A. Cancer statistics, 2018 [J]. CA Cancer J Clin, 2018, 68(1): 7-30.
[12]
Song J,Liu H,Li Z, et al. Cucurbitacin I inhibits cell migration and invasion and enhances chemosensitivity in colon cancer [J]. Oncol Rep, 2015, 33(4): 1867-1871.
[13]
Nechuta SJ,Caan BJ,Chen WY, et al. Soy food intake after diagnosis of breast cancer and survival: an in-depth analysis of combined evidence from cohort studies of US and Chinese women [J]. Am J Clin Nutr, 2012, 96(1): 123-132.
[14]
Pan H,Zhou W,He W, et al. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-kappaB activity via the Notch-1 pathway [J]. Int J Mol Med, 2012, 30(2): 337-343.
[15]
Cheng CJ,Bahal R,Babar IA, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment [J]. Nature, 2015, 518(7537): 107-110.
[16]
韩晓翠,左晓丽,李敏, 等. 微RNA221/222在乳腺癌中的研究进展[J/CD]. 中华乳腺病杂志(电子版), 2017, 11(6): 369-371.
[17]
Santovito D,Mezzetti A,Cipollone F. MicroRNAs and atherosclerosis: new actors for an old movie [J]. Nutr Metab Cardiovasc Dis, 2012, 22(11): 937-943.
[18]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-297.
[19]
Bartel DP. MicroRNAs: target recognition and regulatory functions [J]. Cell, 2009, 136(2): 215-233.
[20]
Schickel R,Boyerinas B,Park SM, et al. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death [J]. Oncogene, 2008, 27(45): 5959-5974.
[21]
Chua JH,Armugam A,Jeyaseelan K. MicroRNAs: biogenesis, function and applications [J]. Curr Opin Mol Ther, 2009, 11(2): 189-199.
[22]
Lu J,Getz G,Miska EA, et al. MicroRNA expression profiles classify human cancers [J]. Nature, 2005, 435(7043): 834-838.
[23]
Iorio MV,Casalini P,Tagliabue E, et al. MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer [J]. Eur J Cancer, 2008, 44(18): 2753-2759.
[24]
Shen YL,Jiang YG,Greenlee AR, et al. MicroRNA expression profiles and miR-10a target in anti-benzo[a] pyrene-7, 8-diol-9, 10-epoxide-transformed human 16HBE cells [J]. Biomed Environ Sci, 2009, 22(1): 14-21.
[25]
Reedijk M,Odorcic S,Chang L, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival [J]. Cancer Res, 2005, 65(18): 8530-8537.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[13] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要