切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 232 -237. doi: 10.3877/cma.j.issn.1674-0807.2025.04.007

综述

长链非编码RNA在乳腺癌放射抵抗性中作用机制的研究进展
潘靖宇1, 易慧旖1, 周旋1, 李雪1, 叶海琳1, 黄巧珍1, 龙凤1,2,3,()   
  1. 1 730000 兰州,甘肃中医药大学基础医学院
    2 730000 兰州,甘肃省高校重大疾病分子医学与中医药防治研究省级重点实验室
    3 730000 兰州,敦煌医学与转化教育部重点实验室
  • 收稿日期:2024-05-14 出版日期:2025-08-01
  • 通信作者: 龙凤
  • 基金资助:
    敦煌医学与转化教育部重点实验室开放课题(DHYX22-10); 高校教师创新基金项目(2024A-088); 甘肃省科技计划项目(25JRRA250)

Mechanism of action of long non-coding RNA in radiotherapy resistance of breast cancer

Jingyu Pan, Huiyi Yi, Xuan Zhou   

  • Received:2024-05-14 Published:2025-08-01
引用本文:

潘靖宇, 易慧旖, 周旋, 李雪, 叶海琳, 黄巧珍, 龙凤. 长链非编码RNA在乳腺癌放射抵抗性中作用机制的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 232-237.

Jingyu Pan, Huiyi Yi, Xuan Zhou. Mechanism of action of long non-coding RNA in radiotherapy resistance of breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2025, 19(04): 232-237.

放射治疗是目前临床治疗乳腺癌的主要方法之一。然而,放射抵抗性常限制治疗效果,其预后和疗效不尽人意。放射抵抗性与多个因素相关,长链非编码RNA(lncRNA)在乳腺癌放射抵抗性中发挥重要作用。lncRNA通过调控细胞周期、凋亡路径、迁移与侵袭、DNA损伤修复等多种机制,影响肿瘤细胞对放射治疗的反应。lncRNA不仅通过调控miRNA影响细胞凋亡,还可以通过影响DNA修复机制及氧化还原反应调节乳腺癌的放射抵抗性。本文就lncRNA在乳腺癌放射抵抗性中的作用机制以及潜在的分子通路进行综述,为寻找有效的放射治疗增敏新靶点提供思路。

[1]
Bray FLaversanne MSung H,et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin202474(3):229-263.
[2]
Nounou MIElamrawy FAhmed N,et al. Breast cancer:conventional diagnosis and treatment modalities and recent patents and technologies[J].Breast Cancer (Auckl)20159 Suppl 2:17-34.
[3]
Takahashi MHasegawa YGao C,et al. N-glycans of growth factor receptors:their role in receptor function and disease implications[J].Clin Sci (Lond)2016130(20):1781-1792.
[4]
Azria DBrengues MGourgou S,et al. Personalizing breast cancer irradiation using biology: from bench to the accelerator[J].Front Oncol20188:83.
[5]
Mcgale PTaylor CCorrea C,et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality:meta-analysis of individual patient data for 8135 women in 22 randomised trials[J].Lancet2014383(9935):2127-2135.
[6]
Sjostrom MLundstedt DHartman L,et al. Response to radiotherapy after breast-conserving surgery in different breast cancer subtypes in the swedish breast cancer group 91 radiotherapy randomized clinical trial[J].J Clin Oncol201735(28):3222-3229.
[7]
Kumar SGonzalez EArameshwar P,et al. Non-coding rnas as mediators of epigenetic changes in malignancies[J].Cancers (Basel)202012(12):3657.
[8]
Connerty PLock RBde Bock CE. Long non-coding rnas: major regulators of cell stress in cancer[J].Front Oncol202010:285.
[9]
Castro-oropeza RMelendez-zajgla JMaldonado V,et al. The emerging role of lncRNAs in the regulation of cancer stem cells[J].Cell Oncol (Dordr)201841(6):585-603.
[10]
Alizadeh AJebelli ABaradaran B,et al. Crosstalk between long noncoding RNA DLX6-AS1,microRNAs and signaling pathways:a pivotal molecular mechanism in human cancers[J].Gene2021769:145224.
[11]
Qian XZhao JYeung PY,et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J].Trends Biochem Sci201944(1):33-52.
[12]
Liu HZheng WChen Q,et al. LncRNA CASC19 contributes to radioresistance of nasopharyngeal carcinoma by promoting autophagy via AMPK-mTOR pathway[J].Int J Mol Sci202122(3):1407.
[13]
Zhang HHua YJiang Z,et al. Cancer-associated fibroblast-promoted lncRNA DNM3OS confers radioresistance by regulating DNA damage response in esophageal squamous cell Carcinoma[J].Clin Cancer Res201925(6):1989-2000.
[14]
Baskar RDai JWenlong N,et al. Biological response of cancer cells to radiation treatment[J].Front Mol Biosci20141:24.
[15]
Mavragani IVNikitaki ZKalospyros SA,et al. Ionizing radiation and complex DNA damage: from prediction to detection challenges and biological significance[J].Cancers (Basel)201911(11):1789.
[16]
Zou ZChang HLi H,et al. Induction of reactive oxygen species: an emerging approach for cancer therapy[J].Apoptosis201722(11): 1321-1335.
[17]
Shah CVicini F. The American Brachytherapy Society consensus statement for accelerated partial-breast irradiation[J].Brachytherapy201817(1):154-170.
[18]
Bauer A. Radiation treatment for breast cancer[J].Surg Clin North Am2023103(1):187-199.
[19]
Meattini IBecherini CBoersma L,et al. European society for radiotherapy and oncology advisory committee in radiation oncology practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer[J].Lancet Oncol202223(1):e21-e31.
[20]
Tang LWei FWu Y,et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods[J].J Exp Clin Cancer Res201837(1):87.
[21]
Wu WZhang SHe J. The mechanism of long non-coding RNA in cancer radioresistance/radiosensitivity:a systematic review[J].Front Pharmacol202213:879704.
[22]
Goldstein MKastan MB. The DNA damage response:implications for tumor responses to radiation and chemotherapy[J].Annu Rev Med201566:129-143.
[23]
Morgan MALawrence TS. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways[J].Clin Cancer Res201521(13):2898-2904.
[24]
Turgeon MOPerry NPoulogiannis G. DNA damage,repair,and cancer metabolism[J].Front Oncol20188:15.
[25]
Hill RMFok MGrundy G,et al. The role of autophagy in hypoxiainduced radioresistance[J].Radiother Oncol2023189:109951.
[26]
Digomann DLinge ADubrovska A. SLC3A2/CD98hc,autophagy and tumor radioresistance: a link confirmed[J].Autophagy201915(10):1850-1851.
[27]
Hu FSong DYan Y,et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation[J].Nat Commun202112(1):3651.
[28]
Olivares-urbano MAGrinan-lison CMarchal JA,et al. CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer[J].Cells20209(7):1651.
[29]
Schulz AMeyer FDubrovska A,et al. Cancer stem cells and radioresistance:DNA repair and beyond[J].Cancers (Basel)201911(6):862.
[30]
Yang LShi PZhao G,et al. Targeting cancer stem cell pathways for cancer therapy[J].Signal Transduct Target Ther20205(1):8.
[31]
Chang LGraham PHao J,et al. Cancer stem cells and signaling pathways in radioresistance[J].Oncotarget20167(10): 11002-11017.
[32]
Suwa TKobayashi MNam JM,et al. Tumor microenvironment and radioresistance[J].Exp Mol Med202153(6):1029-1035.
[33]
Cabrera-licona APerez-anorve IXFlores-fortis M,et al. Deciphering the epigenetic network in cancer radioresistance[J].Radiother Oncol2021159:48-59.
[34]
Borras-fresneda MBarquinero JFGomolka M,et al. Differences in DNA repair capacity,cell death and transcriptional response after irradiation between a radiosensitive and a radioresistant cell line[J].Sci Rep20166:27043.
[35]
Mishra SYadav TRani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics[J].Crit Rev Oncol Hematol201698:12-23.
[36]
Ma YYu LYan W,et al. LncRNA GAS5 sensitizes breast cancer cells to ionizing radiation by inhibiting DNA repair[J].Biomed Res Int20222022:1987519.
[37]
Li JLei CChen B,et al. LncRNA FGD5-AS1 facilitates the radioresistance of breast cancer cells by enhancing MACC1 expression through competitively sponging miR-497-5p[J].Front Oncol202111:671853.
[38]
Lai YChen YLin Y,et al. Down-regulation of LncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer[J]. Cell Biol Int201842(2):227-236.
[39]
Zhang SWang BXiao H,et al. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p[J].Thorac Cancer202011(7):1801-1816.
[40]
Hu XDing DZhang J,et al. Knockdown of lncRNA HOTAIR sensitizes breast cancer cells to ionizing radiation through activating miR-218[J].Biosci Rep201939(4):BSR20181038.
[41]
Shi RWu PLiu M,et al. Knockdown of lncRNA PCAT6 enhances radiosensitivity in triple-negative breast cancer cells by regulating miR-185-5p/TPD52 axis[J].Onco Targets Ther202013:3025-3037.
[42]
Zhang NZeng Xsun C,et al. LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 expression[J].Mol Ther Nucleic Acids201918:871-881.
[43]
Liu LZhu YLiu AM,et al. Long noncoding RNA LINC00511 involves in breast cancer recurrence and radioresistance by regulating STXBP4 expression via miR-185[J].Eur Rev Med Pharmacol Sci201923(17):7457-7468.
[44]
Schafer KA. The cell cycle:a review[J].Vet Pathol199835(6): 461-478.
[45]
Neizer-ashun FBhattacharya R. Reality CHEK: understanding the biology and clinical potential of CHK1[J].Cancer Lett2021497: 202-211.
[46]
Yang ZXSun YHHe JG,et al. Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells[J].Oncol Lett201510(6):3443-3449.
[47]
Adachi TZhao WMinami K,et al. Chk1 suppression leads to a reduction in the enhanced radiation-induced invasive capability on breast cancer cells[J].J Radiat Res202162(5):764-772.
[48]
Al-eidan AWang YSkipp P,et al. The USP7 protein interaction network and its roles in tumorigenesis[J].Genes Dis20229(1):41-50.
[49]
Zhang PWei YWang L,et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1[J].Nat Cell Biol201416(9):864-875.
[50]
Wang BZheng JLI R,et al. Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells[J].Cell Death Dis201910(10):764.
[51]
Cao QYu JDhanasekaran SM,et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer[J].Oncogene200827(58):7274-7284.
[52]
Corso GFigueiredo JDe Angelis SP,et al. E-cadherin deregulation in breast cancer[J].J Cell Mol Med202024(11):5930-5936.
[53]
Eckenstaler RHauke MBenndorf RA. A current overview of RhoA,RhoB,and RhoC functions in vascular biology and pathology[J]. Biochem Pharmacol2022206:115321.
[54]
Ju JAGodet IDigiacomo JW,et al. RhoB is regulated by hypoxia and modulates metastasis in breast cancer[J].Cancer Rep (Hoboken)20203(1):e1164.
[55]
Lei CLi SFan Y,et al. LncRNA DUXAP8 induces breast cancer radioresistance by modulating the PI3K/AKT/mTOR pathway and the EZH2-E-cadherin/RHOB pathway[J].Cancer Biol Ther202223(1):1-13.
[56]
Deligio JTLin GChalfant CE,et al. Splice variants of cytosolic polyadenylation element-binding protein 2 (CPEB2) differentially regulate pathways linked to cancer metastasis[J].J Biol Chem2017292(43):17909-17918.
[57]
Feng JLi YZhu L,et al. STAT1 mediated long non-coding RNA LINC00504 influences radio-sensitivity of breast cancer via binding to TAF15 and stabilizing CPEB2 expression[J].Cancer Biol Ther202122(10/11/12):630-639.
[58]
Zhao YChen S. Targeting DNA double-strand break (DSB) repair to counteract tumor radio-resistance[J].Curr Drug Targets201920(9):891-902.
[59]
Chatterjee NWalker GC. Mechanisms of DNA damage,repair,and mutagenesis[J].Environ Mol Mutagen201758(5):235-263.
[60]
Raleigh DRHaas-kogan DA. Molecular targets and mechanisms of radiosensitization using DNA damage response pathways[J].Future Oncol20139(2):219-233.
[61]
Hartlerode AJScully R. Mechanisms of double-strand break repair in somatic mammalian cells[J].Biochem J2009423(2):157-168.
[62]
Zhang YHe QHu Z,et al. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer[J].Nat Struct Mol Biol201623(6):522-530.
[63]
Qian LFei QZhang H,et al. lncRNA HOTAIR promotes DNA repair and radioresistance of breast cancer via EZH2[J].DNA Cell Biol202039(11):1383-1393.
[64]
Kabakov AEYakimova AO. Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors:approaches to targeting and radiosensitizing[J].Cancers (Basel)202113(5):1102.
[65]
Kopecka JSalaroglio ICPerez-ruiz E,et al. Hypoxia as a driver of resistance to immunotherapy[J].Drug Resist Updat202159: 100787.
[66]
Zhong JRajaram NBrizel DM,et al. Radiation induces aerobic glycolysis through reactive oxygen species[J].Radiother Oncol2013106(3):390-396.
[67]
Feng HWang JChen W,et al. Hypoxia-induced autophagy as an additional mechanism in human osteosarcoma radioresistance[J].J Bone Oncol20165(2):67-73.
[68]
Yang YZhang YWu Q,et al. Clinical implications of high NQO1 expression in breast cancers[J].J Exp Clin Cancer Res201433(1):14.
[69]
Lin LCLee HTChien PJ,et al. NAD(P)H:quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1[J].Int J Med Sci202017(14):2214-2224.
[70]
Bjerkvig RTysnes BBAboody KS,et al. Opinion:the origin of the cancer stem cell:current controversies and new insights[J].Nat Rev Cancer20055(11):899-904.
[71]
Martins-neves SRCleton-jansen AMGomes C. Therapy-induced enrichment of cancer stem-like cells in solid human tumors:where do we stand?[J].Pharmacol Res2018137:193-204.
[72]
Ervin EHFrench RChang CH,et al. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer[J].Semin Cancer Biol202287:48-83.
[73]
Alzahrani AS. PI3K/AKT/mTOR inhibitors in cancer:at the bench and bedside[J].Semin Cancer Biol201959:125-132.
[74]
Miricescu DTotan AStanescu-spinu II,et al. PI3K/AKT/mTOR signaling pathway in breast cancer:from molecular landscape to clinical aspects[J].Int J Mol Sci202022(1):173.
[75]
Datta SRBrunet AGreenberg ME. Cellular survival:a play in three AKTS[J].Genes Dev199913(22):2905-2927.
[76]
Zhao WSun MLi S,et al. Transcription factor ATF3 mediates the radioresistance of breast cancer[J].J Cell Mol Med201822(10): 4664-4675.
[77]
Zhou YWang CLiu X,et al. Long non-coding RNA HOTAIR enhances radioresistance in MDA-MB231 breast cancer cells[J].Oncol Lett201713(3):1143-1148.
[78]
Liu JXiao QXiao J,et al. Wnt/beta-catenin signalling: function,biological mechanisms,and therapeutic opportunities[J].Signal Transduct Target Ther20227(1):3.
[79]
Yu FYu CLi F,et al. Wnt/beta-catenin signaling in cancers and targeted therapies[J].Signal Transduct Target Ther20216(1):307.
[80]
Yang YZhou HZhang G,et al. Targeting the canonical Wnt/betacatenin pathway in cancer radioresistance: updates on the molecular mechanisms[J].J Cancer Res Ther201915(2):272-277.
[81]
Nong JKang KShi Q,et al. Phase separation of Axin organizes the beta-catenin destruction complex[J].J Cell Biol2021220(4): e202012112.
[82]
Bi ZLi QDinglin X,et al. Nanoparticles (NPs)-meditated lncRNA AFAP1-AS1 silencing to block wnt/beta-catenin signaling pathway for synergistic reversal of radioresistance and effective cancer radiotherapy[J]. Adv Sci (Weinh)20207(18):2000915.
[1] 《乳腺癌新辅助免疫治疗专家共识》专家组. 乳腺癌新辅助免疫治疗专家共识(2025年版)[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 193-197.
[2] 卜烨, 王鹏, 安丽颖, 陈园. 三阴性乳腺癌组织长链非编码RNA CCAT1、miR-152表达与增殖侵袭基因以及临床病理特征的关系[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 198-205.
[3] 李毅力, 向科, 庄雨陈, 任嘉辉, 高寒. 腔镜辅助乳腺癌保留乳头乳晕的乳房切除术及Ⅰ期乳房重建的临床应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 206-210.
[4] 王锐, 马得原, 韩晶, 金转梅, 张凤竹, 王玉凤, 关泉林. HER-2低表达的年轻乳腺癌患者新辅助化疗疗效影响因素及其预测模型构建[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 211-217.
[5] 刘奕莹, 李魁, 郑子芳, 郑长悦, 林力生, 陈海英, 黄龙伟, 蔡志银, 林慕昀, 苏思盈, 李航. 乳房切除术后乳头乳晕复合体缺血坏死相关因素分析[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 218-225.
[6] 王晨曦, 姚心怡, 石汪琼, 杜丽萍. 乳腺癌患者复发风险感知的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 179-181.
[7] 李陈钰, 贺青卿, 庄大勇, 周鹏, 岳涛, 邵长秀, 徐婧, 李小磊. 乳腺、肺及甲状腺同时性三原发癌一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 188-189.
[8] 奎玉凤, 李毅. 糖尿病血管内皮细胞损伤机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 363-367.
[9] 严孟欣, 朱星瑀, 陈翔. 真空辅助微创切除术治疗乳腺良性分叶状肿瘤的安全性评估:基于倾向性评分匹配[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 269-273.
[10] 安宁, 陈健, 张京伟, 习一清. 长链非编码RNA 乳腺癌抗雌激素耐药基因4 在常见肿瘤进展中的作用[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 203-208.
[11] 刘小娜, 史博慧, 马晓霞, 陈瑶, 郝娜. 乳腺癌不同手术方式对术后并发症及康复影响的对比观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 551-554.
[12] 郭雯, 任谊, 魏庆忠. 改良VSD装置在乳腺癌改良根治术后腋窝引流中的临床应用价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 555-558.
[13] 张克俭, 赵建红, 尚培中, 张克勤, 张少斌, 王铁山. 乳腺癌肺转移术后化疗并发骨髓增生异常和Sweet综合征一例报道[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 471-472.
[14] 鲁旭, 李华. 结直肠癌肝转移肝移植治疗研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 508-514.
[15] 慕佳霖, 孙萌, 李育霖, 邹卉. 甲基丙二酸血症合并肾脏并发症的发生机制和治疗研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 382-387.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?