[1] |
Bray F,Laversanne M,Sung H,et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2024,74(3):229-263.
|
[2] |
Nounou MI,Elamrawy F,Ahmed N,et al. Breast cancer:conventional diagnosis and treatment modalities and recent patents and technologies[J].Breast Cancer (Auckl),2015,9 Suppl 2:17-34.
|
[3] |
Takahashi M,Hasegawa Y,Gao C,et al. N-glycans of growth factor receptors:their role in receptor function and disease implications[J].Clin Sci (Lond),2016,130(20):1781-1792.
|
[4] |
Azria D,Brengues M,Gourgou S,et al. Personalizing breast cancer irradiation using biology: from bench to the accelerator[J].Front Oncol,2018,8:83.
|
[5] |
Mcgale P,Taylor C,Correa C,et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality:meta-analysis of individual patient data for 8135 women in 22 randomised trials[J].Lancet,2014,383(9935):2127-2135.
|
[6] |
Sjostrom M,Lundstedt D,Hartman L,et al. Response to radiotherapy after breast-conserving surgery in different breast cancer subtypes in the swedish breast cancer group 91 radiotherapy randomized clinical trial[J].J Clin Oncol,2017,35(28):3222-3229.
|
[7] |
Kumar S,Gonzalez EA,rameshwar P,et al. Non-coding rnas as mediators of epigenetic changes in malignancies[J].Cancers (Basel),2020,12(12):3657.
|
[8] |
Connerty P,Lock RB,de Bock CE. Long non-coding rnas: major regulators of cell stress in cancer[J].Front Oncol,2020,10:285.
|
[9] |
Castro-oropeza R,Melendez-zajgla J,Maldonado V,et al. The emerging role of lncRNAs in the regulation of cancer stem cells[J].Cell Oncol (Dordr),2018,41(6):585-603.
|
[10] |
Alizadeh A,Jebelli A,Baradaran B,et al. Crosstalk between long noncoding RNA DLX6-AS1,microRNAs and signaling pathways:a pivotal molecular mechanism in human cancers[J].Gene,2021,769:145224.
|
[11] |
Qian X,Zhao J,Yeung PY,et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J].Trends Biochem Sci,2019,44(1):33-52.
|
[12] |
Liu H,Zheng W,Chen Q,et al. LncRNA CASC19 contributes to radioresistance of nasopharyngeal carcinoma by promoting autophagy via AMPK-mTOR pathway[J].Int J Mol Sci,2021,22(3):1407.
|
[13] |
Zhang H,Hua Y,Jiang Z,et al. Cancer-associated fibroblast-promoted lncRNA DNM3OS confers radioresistance by regulating DNA damage response in esophageal squamous cell Carcinoma[J].Clin Cancer Res,2019,25(6):1989-2000.
|
[14] |
Baskar R,Dai J,Wenlong N,et al. Biological response of cancer cells to radiation treatment[J].Front Mol Biosci,2014,1:24.
|
[15] |
Mavragani IV,Nikitaki Z,Kalospyros SA,et al. Ionizing radiation and complex DNA damage: from prediction to detection challenges and biological significance[J].Cancers (Basel),2019,11(11):1789.
|
[16] |
Zou Z,Chang H,Li H,et al. Induction of reactive oxygen species: an emerging approach for cancer therapy[J].Apoptosis,2017,22(11): 1321-1335.
|
[17] |
Shah C,Vicini F. The American Brachytherapy Society consensus statement for accelerated partial-breast irradiation[J].Brachytherapy,2018,17(1):154-170.
|
[18] |
Bauer A. Radiation treatment for breast cancer[J].Surg Clin North Am,2023,103(1):187-199.
|
[19] |
Meattini I,Becherini C,Boersma L,et al. European society for radiotherapy and oncology advisory committee in radiation oncology practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer[J].Lancet Oncol,2022,23(1):e21-e31.
|
[20] |
Tang L,Wei F,Wu Y,et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods[J].J Exp Clin Cancer Res,2018,37(1):87.
|
[21] |
Wu W,Zhang S,He J. The mechanism of long non-coding RNA in cancer radioresistance/radiosensitivity:a systematic review[J].Front Pharmacol,2022,13:879704.
|
[22] |
Goldstein M,Kastan MB. The DNA damage response:implications for tumor responses to radiation and chemotherapy[J].Annu Rev Med,2015,66:129-143.
|
[23] |
Morgan MA,Lawrence TS. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways[J].Clin Cancer Res,2015,21(13):2898-2904.
|
[24] |
Turgeon MO,Perry N,Poulogiannis G. DNA damage,repair,and cancer metabolism[J].Front Oncol,2018,8:15.
|
[25] |
Hill RM,Fok M,Grundy G,et al. The role of autophagy in hypoxiainduced radioresistance[J].Radiother Oncol,2023,189:109951.
|
[26] |
Digomann D,Linge A,Dubrovska A. SLC3A2/CD98hc,autophagy and tumor radioresistance: a link confirmed[J].Autophagy,2019,15(10):1850-1851.
|
[27] |
Hu F,Song D,Yan Y,et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation[J].Nat Commun,2021,12(1):3651.
|
[28] |
Olivares-urbano MA,Grinan-lison C,Marchal JA,et al. CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer[J].Cells,2020,9(7):1651.
|
[29] |
Schulz A,Meyer F,Dubrovska A,et al. Cancer stem cells and radioresistance:DNA repair and beyond[J].Cancers (Basel),2019,11(6):862.
|
[30] |
Yang L,Shi P,Zhao G,et al. Targeting cancer stem cell pathways for cancer therapy[J].Signal Transduct Target Ther,2020,5(1):8.
|
[31] |
Chang L,Graham P,Hao J,et al. Cancer stem cells and signaling pathways in radioresistance[J].Oncotarget,2016,7(10): 11002-11017.
|
[32] |
Suwa T,Kobayashi M,Nam JM,et al. Tumor microenvironment and radioresistance[J].Exp Mol Med,2021,53(6):1029-1035.
|
[33] |
Cabrera-licona A,Perez-anorve IX,Flores-fortis M,et al. Deciphering the epigenetic network in cancer radioresistance[J].Radiother Oncol,2021,159:48-59.
|
[34] |
Borras-fresneda M,Barquinero JF,Gomolka M,et al. Differences in DNA repair capacity,cell death and transcriptional response after irradiation between a radiosensitive and a radioresistant cell line[J].Sci Rep,2016,6:27043.
|
[35] |
Mishra S,Yadav T,Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics[J].Crit Rev Oncol Hematol,2016,98:12-23.
|
[36] |
Ma Y,Yu L,Yan W,et al. LncRNA GAS5 sensitizes breast cancer cells to ionizing radiation by inhibiting DNA repair[J].Biomed Res Int,2022,2022:1987519.
|
[37] |
Li J,Lei C,Chen B,et al. LncRNA FGD5-AS1 facilitates the radioresistance of breast cancer cells by enhancing MACC1 expression through competitively sponging miR-497-5p[J].Front Oncol,2021,11:671853.
|
[38] |
Lai Y,Chen Y,Lin Y,et al. Down-regulation of LncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer[J]. Cell Biol Int,2018,42(2):227-236.
|
[39] |
Zhang S,Wang B,Xiao H,et al. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p[J].Thorac Cancer,2020,11(7):1801-1816.
|
[40] |
Hu X,Ding D,Zhang J,et al. Knockdown of lncRNA HOTAIR sensitizes breast cancer cells to ionizing radiation through activating miR-218[J].Biosci Rep,2019,39(4):BSR20181038.
|
[41] |
Shi R,Wu P,Liu M,et al. Knockdown of lncRNA PCAT6 enhances radiosensitivity in triple-negative breast cancer cells by regulating miR-185-5p/TPD52 axis[J].Onco Targets Ther,2020,13:3025-3037.
|
[42] |
Zhang N,Zeng X,sun C,et al. LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 expression[J].Mol Ther Nucleic Acids,2019,18:871-881.
|
[43] |
Liu L,Zhu Y,Liu AM,et al. Long noncoding RNA LINC00511 involves in breast cancer recurrence and radioresistance by regulating STXBP4 expression via miR-185[J].Eur Rev Med Pharmacol Sci,2019,23(17):7457-7468.
|
[44] |
Schafer KA. The cell cycle:a review[J].Vet Pathol,1998,35(6): 461-478.
|
[45] |
Neizer-ashun F,Bhattacharya R. Reality CHEK: understanding the biology and clinical potential of CHK1[J].Cancer Lett,2021,497: 202-211.
|
[46] |
Yang ZX,Sun YH,He JG,et al. Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells[J].Oncol Lett,2015,10(6):3443-3449.
|
[47] |
Adachi T,Zhao W,Minami K,et al. Chk1 suppression leads to a reduction in the enhanced radiation-induced invasive capability on breast cancer cells[J].J Radiat Res,2021,62(5):764-772.
|
[48] |
Al-eidan A,Wang Y,Skipp P,et al. The USP7 protein interaction network and its roles in tumorigenesis[J].Genes Dis,2022,9(1):41-50.
|
[49] |
Zhang P,Wei Y,Wang L,et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1[J].Nat Cell Biol,2014,16(9):864-875.
|
[50] |
Wang B,Zheng J,LI R,et al. Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells[J].Cell Death Dis,2019,10(10):764.
|
[51] |
Cao Q,Yu J,Dhanasekaran SM,et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer[J].Oncogene,2008,27(58):7274-7284.
|
[52] |
Corso G,Figueiredo J,De Angelis SP,et al. E-cadherin deregulation in breast cancer[J].J Cell Mol Med,2020,24(11):5930-5936.
|
[53] |
Eckenstaler R,Hauke M,Benndorf RA. A current overview of RhoA,RhoB,and RhoC functions in vascular biology and pathology[J]. Biochem Pharmacol,2022,206:115321.
|
[54] |
Ju JA,Godet I,Digiacomo JW,et al. RhoB is regulated by hypoxia and modulates metastasis in breast cancer[J].Cancer Rep (Hoboken),2020,3(1):e1164.
|
[55] |
Lei C,Li S,Fan Y,et al. LncRNA DUXAP8 induces breast cancer radioresistance by modulating the PI3K/AKT/mTOR pathway and the EZH2-E-cadherin/RHOB pathway[J].Cancer Biol Ther,2022,23(1):1-13.
|
[56] |
Deligio JT,Lin G,Chalfant CE,et al. Splice variants of cytosolic polyadenylation element-binding protein 2 (CPEB2) differentially regulate pathways linked to cancer metastasis[J].J Biol Chem,2017,292(43):17909-17918.
|
[57] |
Feng J,Li Y,Zhu L,et al. STAT1 mediated long non-coding RNA LINC00504 influences radio-sensitivity of breast cancer via binding to TAF15 and stabilizing CPEB2 expression[J].Cancer Biol Ther,2021,22(10/11/12):630-639.
|
[58] |
Zhao Y,Chen S. Targeting DNA double-strand break (DSB) repair to counteract tumor radio-resistance[J].Curr Drug Targets,2019,20(9):891-902.
|
[59] |
Chatterjee N,Walker GC. Mechanisms of DNA damage,repair,and mutagenesis[J].Environ Mol Mutagen,2017,58(5):235-263.
|
[60] |
Raleigh DR,Haas-kogan DA. Molecular targets and mechanisms of radiosensitization using DNA damage response pathways[J].Future Oncol,2013,9(2):219-233.
|
[61] |
Hartlerode AJ,Scully R. Mechanisms of double-strand break repair in somatic mammalian cells[J].Biochem J,2009,423(2):157-168.
|
[62] |
Zhang Y,He Q,Hu Z,et al. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer[J].Nat Struct Mol Biol,2016,23(6):522-530.
|
[63] |
Qian L,Fei Q,Zhang H,et al. lncRNA HOTAIR promotes DNA repair and radioresistance of breast cancer via EZH2[J].DNA Cell Biol,2020,39(11):1383-1393.
|
[64] |
Kabakov AE,Yakimova AO. Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors:approaches to targeting and radiosensitizing[J].Cancers (Basel),2021,13(5):1102.
|
[65] |
Kopecka J,Salaroglio IC,Perez-ruiz E,et al. Hypoxia as a driver of resistance to immunotherapy[J].Drug Resist Updat,2021,59: 100787.
|
[66] |
Zhong J,Rajaram N,Brizel DM,et al. Radiation induces aerobic glycolysis through reactive oxygen species[J].Radiother Oncol,2013,106(3):390-396.
|
[67] |
Feng H,Wang J,Chen W,et al. Hypoxia-induced autophagy as an additional mechanism in human osteosarcoma radioresistance[J].J Bone Oncol,2016,5(2):67-73.
|
[68] |
Yang Y,Zhang Y,Wu Q,et al. Clinical implications of high NQO1 expression in breast cancers[J].J Exp Clin Cancer Res,2014,33(1):14.
|
[69] |
Lin LC,Lee HT,Chien PJ,et al. NAD(P)H:quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1[J].Int J Med Sci,2020,17(14):2214-2224.
|
[70] |
Bjerkvig R,Tysnes BB,Aboody KS,et al. Opinion:the origin of the cancer stem cell:current controversies and new insights[J].Nat Rev Cancer,2005,5(11):899-904.
|
[71] |
Martins-neves SR,Cleton-jansen AM,Gomes C. Therapy-induced enrichment of cancer stem-like cells in solid human tumors:where do we stand?[J].Pharmacol Res,2018,137:193-204.
|
[72] |
Ervin EH,French R,Chang CH,et al. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer[J].Semin Cancer Biol,2022,87:48-83.
|
[73] |
Alzahrani AS. PI3K/AKT/mTOR inhibitors in cancer:at the bench and bedside[J].Semin Cancer Biol,2019,59:125-132.
|
[74] |
Miricescu D,Totan A,Stanescu-spinu II,et al. PI3K/AKT/mTOR signaling pathway in breast cancer:from molecular landscape to clinical aspects[J].Int J Mol Sci,2020,22(1):173.
|
[75] |
Datta SR,Brunet A,Greenberg ME. Cellular survival:a play in three AKTS[J].Genes Dev,1999,13(22):2905-2927.
|
[76] |
Zhao W,Sun M,Li S,et al. Transcription factor ATF3 mediates the radioresistance of breast cancer[J].J Cell Mol Med,2018,22(10): 4664-4675.
|
[77] |
Zhou Y,Wang C,Liu X,et al. Long non-coding RNA HOTAIR enhances radioresistance in MDA-MB231 breast cancer cells[J].Oncol Lett,2017,13(3):1143-1148.
|
[78] |
Liu J,Xiao Q,Xiao J,et al. Wnt/beta-catenin signalling: function,biological mechanisms,and therapeutic opportunities[J].Signal Transduct Target Ther,2022,7(1):3.
|
[79] |
Yu F,Yu C,Li F,et al. Wnt/beta-catenin signaling in cancers and targeted therapies[J].Signal Transduct Target Ther,2021,6(1):307.
|
[80] |
Yang Y,Zhou H,Zhang G,et al. Targeting the canonical Wnt/betacatenin pathway in cancer radioresistance: updates on the molecular mechanisms[J].J Cancer Res Ther,2019,15(2):272-277.
|
[81] |
Nong J,Kang K,Shi Q,et al. Phase separation of Axin organizes the beta-catenin destruction complex[J].J Cell Biol,2021,220(4): e202012112.
|
[82] |
Bi Z,Li Q,Dinglin X,et al. Nanoparticles (NPs)-meditated lncRNA AFAP1-AS1 silencing to block wnt/beta-catenin signaling pathway for synergistic reversal of radioresistance and effective cancer radiotherapy[J]. Adv Sci (Weinh),2020,7(18):2000915.
|