切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 211 -217. doi: 10.3877/cma.j.issn.1674-0807.2025.04.004

论著

HER-2低表达的年轻乳腺癌患者新辅助化疗疗效影响因素及其预测模型构建
王锐1, 马得原1, 韩晶1, 金转梅1, 张凤竹1, 王玉凤1, 关泉林1,2,()   
  1. 1 730000 兰州,兰州大学第一临床医学院
    2 730000 兰州,兰州大学第一医院胃肠肿瘤外科
  • 收稿日期:2024-10-17 出版日期:2025-08-01
  • 通信作者: 关泉林

Influencing factors of neoadjuvant chemotherapy efficacy in young breast cancer patients with low HER-2 expression and establishment of prediction model

Rui Wang1, Deyuan Ma1, Jing Han1, Zhuanmei Jin1, Fengzhu Zhang1, Yufeng Wang1, Quanlin Guan1,2,()   

  1. 1 First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
    2 Department of Gastrointestinal Surgical Oncology, First Hospital of Lanzhou University, Lanzhou 730000, China
  • Received:2024-10-17 Published:2025-08-01
  • Corresponding author: Quanlin Guan
引用本文:

王锐, 马得原, 韩晶, 金转梅, 张凤竹, 王玉凤, 关泉林. HER-2低表达的年轻乳腺癌患者新辅助化疗疗效影响因素及其预测模型构建[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 211-217.

Rui Wang, Deyuan Ma, Jing Han, Zhuanmei Jin, Fengzhu Zhang, Yufeng Wang, Quanlin Guan. Influencing factors of neoadjuvant chemotherapy efficacy in young breast cancer patients with low HER-2 expression and establishment of prediction model[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2025, 19(04): 211-217.

目的

分析HER-2低表达年轻乳腺癌患者新辅助化疗(NAC)疗效的影响因素。

方法

根据纳入及排除标准,收集了2017年12月到2022年7月于兰州大学第一医院胃肠肿瘤外科、乳腺外科及甘肃省肿瘤医院乳腺科接受术前NAC的68例HER-2低表达年轻乳腺癌患者(<40岁)的临床资料进行回顾性研究。采用Miller-Payne分级标准判定NAC的病理学疗效,根据分级将患者分为缓解不良组(1~3级,n=33)和缓解良好组(4~5级,n=35)。分析2组临床病理特征和血液学指标,以 χ2检验/Fisher精确检验和Mann-Whitney U检验进行2组比较。差异有统计学意义的因素被纳入多因素Logistic 回归分析筛选出HER-2低表达年轻乳腺癌NAC疗效的独立预测因子,进一步构建列线图模型并进行模型评价。

结果

在HER-2低表达年轻乳腺癌患者中,2组临床病理特征比较,差异无统计学意义(P均<0.050);与缓解不良组比较,缓解良好组具有较高的NAC后淋巴细胞绝对值(post-Lym),NAC后血小板计数(post-Plt),NAC后白蛋白(post-Alb),NAC前、后随机静脉血糖(pre-RVPG、post-RVPG)及其变化值(ΔRVPG)(χ2=5.858、4.788、4.637、7.428、4.839、5.316,P=0.016、0.029、0.031、0.006、0.028、0.021)。多因素分析结果显示:post-Alb(OR=7.713,95%CI:1.620~36.716,P=0.010)、post-RVPG(OR=14.612,95%CI:2.225~95.939,P=0.005)和ΔRVPG(OR=9.639,95%CI: 2.511~36.997,P<0.001)是HER-2低表达的年轻乳腺癌患者NAC疗效的独立预测因子。基于多因素Logistic回归分析结果,构建预测HER-2低表达的年轻乳腺癌患者NAC疗效的列线图模型的受试者操作特征曲线下面积为0.797(95%CI:0.693~0.900)。校准曲线平均绝对误差为0.042(<0.050),提示模型具有良好的校准度。

结论

HER-2低表达的年轻乳腺癌患者NAC疗效可能与代谢-营养状态密切关联。白蛋白、随机静脉血糖及NAC前后血糖波动可能成为该人群疗效预测的标志物,为精准治疗提供依据。

Objective

To analyze the influencing factors of the efficacy of neoadjuvant chemotherapy (NAC) in young patients with HER-2 low-expression breast cancer.

Methods

According to the inclusion and exclusion criteria,this retrospective study collected the clinical data of 68 young breast cancer patients with HER-2 low-expression (<40 years old) who received preoperative NAC in the Department of Oncology Surgery,Department of Breast Surgery of the First Hospital of Lanzhou University and Department of Breast Surgery of Gansu Provincial Cancer Hospital from December 2017 to July 2022. The pathological efficacy of NAC was evaluated by the Miller-Payne grading system. According to the grading results,the patients were divided into the poor pathological response group (grade 1-3,n=33) and the good pathological response group (grade 4-5,n=35). The clinicopathological characteristics and hematological indexes were compared between two groups by chi-square test/Fisher's exact test and Mann-Whitney U test. Factors with statistically significant differences were included in multivariate logistic regression analysis to screen out the independent predictors of NAC efficacy in young patients with HER-2 low-expression,and accordingly a nomogram model was constructed and evaluated.

Results

Among young breast cancer patients with HER-2 low-expression,there was no statistically significant difference in clinicopathological characteristics between two groups (all P<0.050). Compared with the poor response group,the good response group had higher absolute lymphocyte count after NAC (post-Lym),platelet count after NAC (post-Plt),albumin after NAC (post-Alb),random venous plasma glucose before and after NAC (pre-RVPG,post-RVPG),and change value (ΔRVPG) (χ2=5.858,4.788,4.637,7.428,4.839,5.316; P=0.016,0.029,0.031,0.006,0.028,0.021). Multivariate analysis showed that post-Alb (OR=7.713,95%CI: 1.620-36.716,P=0.010),post-RVPG (OR=14.612,95%CI: 2.225-95.939,P=0.005) and ΔRVPG (OR=9.639,95%CI: 2.511-36.997,P<0.001) were independent predictors of NAC efficacy in young breast cancer patients with HER-2 low-expression. Based on the results of multivariate logistic regression analysis,the nomogram model for predicting NAC efficacy in young patients with HER-2 low-expression was constructed. The area under the receiver operating characteristic curve was 0.797 (95%CI: 0.693-0.900). The mean absolute error of the calibration curve was 0.042 (<0.050),indicating that the model had good calibration.

Conclusion

The efficacy of NAC in young breast cancer patients with HER-2 low-expression may be closely related to metabolism-nutrition status. Albumin,random venous plasma glucose and blood glucose fluctuation before and after NAC may become predictors of efficacy in this population,providing a basis for precise treatment.

表1 HER-2低表达年轻乳腺癌的临床病理特征
表2 HER-2低表达年轻乳腺癌患者血液学指标与新辅助化疗疗效的相关性[例(%)]
血液学指标 截断值 缓解良好(n=35) 缓解不良(n=33) χ2 P
pre-WBC
4.63 29(82.9) 24(72.7) 1.014 0.314
6(17.1) 9(27.3)
post-WBC
4.07 24(68.6) 21(63.6) 0.185 0.667
11(31.4) 12(36.4)
ΔWBC
0.15 27(77.1) 21(63.6) 1.492 0.222
8(22.9) 12(36.4)
pre-HB
110.5 33(94.3) 28(84.8) 1.638 0.252
2(5.7) 5(15.2)
post-HB
111.5 29(82.9) 24(72.7) 1.014 0.314
6(17.1) 9(27.3)
ΔHB
11.5 17(48.6) 12(36.4) 1.035 0.309
18(51.4) 21(63.6)
pre-Lym
1.39 28(80.0) 21(63.6) 2.259 0.133
7(20.0) 12(36.4)
post-Lym
1.24 23(65.7) 12(36.4) 5.858 0.016
12(34.3) 21(63.6)
ΔLym
0.01 32(91.4) 27(81.8) 1.366 0.299
3(8.6) 6(18.2)
pre-Plt
318 6(17.1) 1(3.0) 3.663 0.107
29(82.9) 32(97.0)
post-Plt
207 26(74.3) 16(48.5) 4.788 0.029
9(25.7) 17(51.5)
ΔPlt
41 9(25.7) 7(21.2) 0.191 0.662
26(74.3) 26(78.8)
pre-Alb
50.4 7(20.0) 3(9.1) 1.612 0.307
28(80.0) 30(90.9)
post-Alb
49.15 12(34.3) 4(12.1) 4.637 0.031
23(65.7) 29(87.9)
ΔAlb
1.9 13(37.1) 10(30.3) 0.355 0.551
22(62.9) 23(69.7)
pre-RVPG
5.16 13(37.1) 3(9.1) 7.428 0.006
22(62.9) 30(90.9)
post-RVPG
5.54 9(25.7) 2(6.1) 4.839 0.028
26(74.3) 31(93.9)
ΔRVPG
0.05 18(51.4) 8(24.2) 5.316 0.021
17(48.6) 25(75.8)
pre-CEA
1.14 20(57.1) 18(54.5) 0.046 0.829
15(42.9) 15(45.5)
post-CEA
1.29 24(68.6) 19(57.6) 0.883 0.347
11(31.4) 14(42.4)
ΔCEA
0.265 12(34.3) 7(21.2) 1.442 0.23
23(65.7) 26(78.8)
pre-CA153
17.44 15(42.9) 11(33.3) 0.652 0.419
20(57.1) 22(66.7)
post-CA153
22.165 12(34.3) 9(27.3) 0.391 0.532
23(65.7) 24(72.7)
ΔCA153
-4.845 25(71.4) 20(60.6) 0.889 0.346
10(28.6) 13(39.4)
表3 HER-2低表达年轻乳腺癌患者的临床病理特征与新辅助化疗的相关性[例(%)]
表4 HER-2低表达年轻乳腺癌疗效影响的多因素Logistic回归分析
图1 HER-2低表达年轻乳腺癌患者新辅助化疗疗效的列线图预测模型 注:post-表示新辅助化疗后;Δ表示变化值;Alb表示白蛋白;RVPG表示随机静脉血糖
图2 HER-2低表达年轻乳腺癌患者新辅助化疗疗效预测模型的受试者操作特征曲线
图3 HER-2低表达年轻乳腺癌患者新辅助化疗疗效预测模型的校准曲线
[1]
Siegel RLKratzer TBGiaquinto AN,et al. Cancer statistics,2025[J].CA Cancer J Clin202575(1):10-45.
[2]
Lian WFu FLin Y,et al. The impact of young age for prognosis by subtype in women with early breast cancer[J].Sci Rep20177(1):11625.
[3]
Tesch MEPartridge AH. Treatment of breast cancer in young adults[J].Am Soc Clin Oncol Educ Book202242:1-12.
[4]
Copson EEccles BMaishman T,et al. Prospective observational study of breast cancer treatment outcomes for UK women aged 18-40 years at diagnosis: the POSH study[J].J Natl Cancer Inst2013105(13):978-988.
[5]
Monaghan PPShrestha ABarrett E,et al. Tumour biology and survival outcomes in young women with breast cancer: single-centre retrospective analysis[J].BJS Open20248(6):zrae138.
[6]
Banerji UVan Herpen CMLSaura C,et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study[J].Lancet Oncol201920(8):1124-1135.
[7]
Wang ZHZheng ZQJia SC,et al. Trastuzumab resistance in HER2-positive breast cancer: Mechanisms,emerging biomarkers and targeting agents[J].Front Oncol202212:1006429.
[8]
Farshid GArmes JDessauvagie B,et al. Development and validation of a HER2-low focused immunohistochemical scoring system with high-interobserver concordance: the Australian HER2-low breast cancer concordance study[J].Mod Pathol202437(8):100535.
[9]
Modi SPark HMurthy RK,et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study[J].J Clin Oncol202038(17):1887-1896.
[10]
Zhan MHuang ZXu T,et al. Cost-effectiveness analysis of trastuzumab deruxtecan in patients with HER2-low advanced breast cancer based on DESTINY-Breast04[J].Front Public Health202311:1049947.
[11]
Prat ABardia ACurigliano G,et al. An overview of clinical development of agents for metastatic or advanced breast cancer without ERBB2 amplification (HER2-low)[J].JAMA Oncol20228(11):1676-1687.
[12]
Modi SJacot WYamashita T,et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer[J].N Engl J Med2022387(1):9-20.
[13]
Paluch-Shimon SCardoso FPartridge AH,et al. ESO-ESMO fifth international consensus guidelines for breast cancer in young women (BCY5)[J].Ann Oncol202233(11):1097-1118.
[14]
Ivanova MPorta FMD'ercole M,et al. Standardized pathology report for HER2 testing in compliance with 2023 ASCO/CAP updates and 2023 ESMO consensus statements on HER2-low breast cancer[J].Virchows Arch2024484(1):3-14.
[15]
Schettini FNucera SPascual T,et al. Efficacy and safety of antibody-drug conjugates in pretreated HER2-low metastatic breast cancer: a systematic review and network meta-analysis[J].Cancer Treat Rev2025132:102865.
[16]
Schettini FBlondeaux EMolinelli C,et al. Characterization of HER2-low breast cancer in young women with germline BRCA1/2 pathogenetic variants: results of a large international retrospective cohort study[J].Cancer2024130(16):2746-2762.
[17]
Ingebriktsen LMSvanøe AAMyrmel Sæle AK,et al. Age-related clusters and favorable immune phenotypes in young breast cancer patients[J].Mod Pathol202437(8):100529.
[18]
Siegel RLGiaquinto ANJemal A. Cancer statistics,2024[J].CA Cancer J Clin202474(1):12-49.
[19]
Xiang MZhang HTian J,et al. Low serum albumin levels and high neutrophil counts are predictive of a poorer prognosis in patients with metastatic breast cancer[J].Oncol Lett202224(6):432.
[20]
Yu LHua ZLuo X,et al. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs[J].Biochim Biophys Acta Rev Cancer20221877(1):188655.
[21]
Xiong FDai QZhang S,et al. Diabetes and incidence of breast cancer and its molecular subtypes: A systematic review and meta-analysis[J].Diabetes Metab Res Rev202440(1):e3709.
[22]
Rodón JDemanse DRugo HS,et al. A risk analysis of alpelisib-induced hyperglycemia in patients with advanced solid tumors and breast cancer[J].Breast Cancer Res202426(1):36.
[1] 《乳腺癌新辅助免疫治疗专家共识》专家组. 乳腺癌新辅助免疫治疗专家共识(2025年版)[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 193-197.
[2] 李毅力, 向科, 庄雨陈, 任嘉辉, 高寒. 腔镜辅助乳腺癌保留乳头乳晕的乳房切除术及Ⅰ期乳房重建的临床应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 206-210.
[3] 王晨曦, 姚心怡, 石汪琼, 杜丽萍. 乳腺癌患者复发风险感知的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 179-181.
[4] 李陈钰, 贺青卿, 庄大勇, 周鹏, 岳涛, 邵长秀, 徐婧, 李小磊. 乳腺、肺及甲状腺同时性三原发癌一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 188-189.
[5] 姜明霞, 李俏, 徐兵河. 局部晚期HER-2阳性乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 129-138.
[6] 徐颖, 宋雨, 黄欣, 周易冬, 孙强, 林燕. 精准医学时代局部晚期乳腺癌的诊治热点[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 139-144.
[7] 严孟欣, 朱星瑀, 陈翔. 真空辅助微创切除术治疗乳腺良性分叶状肿瘤的安全性评估:基于倾向性评分匹配[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 269-273.
[8] 刘小娜, 史博慧, 马晓霞, 陈瑶, 郝娜. 乳腺癌不同手术方式对术后并发症及康复影响的对比观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 551-554.
[9] 郭雯, 任谊, 魏庆忠. 改良VSD装置在乳腺癌改良根治术后腋窝引流中的临床应用价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 555-558.
[10] 张克俭, 赵建红, 尚培中, 张克勤, 张少斌, 王铁山. 乳腺癌肺转移术后化疗并发骨髓增生异常和Sweet综合征一例报道[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 471-472.
[11] 袁强, 张华宇, 闫璋哲, 朱含放, 陈光, 孙亮, 吕远, 陈纲, 赵锁. cN0峡部偏侧甲状腺乳头状癌中央区淋巴结转移的术前预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 333-336.
[12] 杨娜, 胡刚, 潘越. 保乳术和改良根治术后行新辅助化疗对三阴性乳腺癌血清标志物影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 345-348.
[13] 李康虎, 刘凯, 王继伟, 王光远. 经腹腹膜前腹股沟疝修补术后尿潴留风险列线图预测模型的构建及验证[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 442-449.
[14] 周艳, 周泽阳, 程欣萌, 何月娥, 李祥勇, 吴勇. 结直肠癌患者早期造口并发症预测模型的构建与验证[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 242-250.
[15] 高星, 宦乡. 老年胃癌患者术后谵妄发生的风险列线图模型构建及应用验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 398-404.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?