[1] |
Bera A, Russ E, Manoharan MS, et al. Proteomic analysis of inflammatory biomarkers associated with breast cancer recurrence [J]. Mil Med, 2020,185(Suppl 1):669-675.
|
[2] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021,71(3):209-249.
|
[3] |
郑荣寿,陈茹,韩冰峰,等. 2022年中国恶性肿瘤流行情况分析[J]. 中华中华肿瘤杂志,2024,46(3):221-231.
|
[4] |
Rodgers KM, Udesky JO, Rudel RA, et al. Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms [J]. Environ Res, 2018,160:152-182.
|
[5] |
Teegarden D, Romieu I, Lelievre SA. Redefining the impact of nutrition on breast cancer incidence: is epigenetics involved? [J]. Nutr Res Rev, 2012,25(1):68-95.
|
[6] |
Wong GS, Rustgi AK. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis [J]. Br J Cancer, 2013,108(4):755-761.
|
[7] |
Box C, Rogers SJ, Mendiola M, et al. Tumour-microenvironmental interactions: paths to progression and targets for treatment [J]. Semin Cancer Biol, 2010,20(3):128-138.
|
[8] |
Rashid S, Song D, Yuan J, et al. Molecular structure, expression, and the emerging role of siglec-15 in skeletal biology and cancer [J]. J Cell Physiol, 2022,237(3):1711-1719.
|
[9] |
Sun J, Lu Q, Sanmamed MF, et al. Siglec-15 as an emerging target for next-generation cancer immunotherapy [J]. Clin Cancer Res, 2021,27(3):680-688.
|
[10] |
Quirino MWL, Pereira MC, Deodato de Souza MF, et al. Immunopositivity for siglec-15 in gastric cancer and its association with clinical and pathological parameters [J]. Eur J Histochem, 2021,65(1):3174.
|
[11] |
Liu W, Ji Z, Wu B, et al. Siglec-15 promotes the migration of liver cancer cells by repressing lysosomal degradation of cd44 [J]. FEBS Lett, 2021,595(17):2290-2302.
|
[12] |
Fan MK, Zhang GC, Chen W, et al. Siglec-15 promotes tumor progression in osteosarcoma via dusp1/mapk pathway [J]. Front Oncol, 2021,11:710689.
|
[13] |
Li QT, Huang ZZ, Chen YB, et al. Integrative analysis of siglec-15 mrna in human cancers based on data mining [J]. J Cancer, 2020,11(9):2453-2464.
|
[14] |
Li B, Zhang B, Wang X, et al. Expression signature, prognosis value, and immune characteristics of siglec-15 identified by pan-cancer analysis [J]. Oncoimmunology, 2020,9(1):1807291.
|
[15] |
Chu C, Yao K, Lu J, et al. Immunophenotypes based on the tumor immune microenvironment allow for unsupervised penile cancer patient stratification [J]. Cancers (Basel), 2020,12(7):1796.
|
[16] |
Wang J, Sun J, Liu LN, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy [J]. Nat Med, 2019,25(4):656-666.
|
[17] |
Angata T, Tabuchi Y, Nakamura K, et al. Siglec-15: an immune system siglec conserved throughout vertebrate evolution [J]. Glycobiology, 2007,17(8):838-846.
|
[18] |
Angata T, Varki A. Discovery, classification, evolution and diversity of siglecs [J]. Mol Aspects Med, 2023,90:101117.
|
[19] |
Angata T. Siglec-15: a potential regulator of osteoporosis, cancer, and infectious diseases [J]. J Biomed Sci, 2020,27(1):10.
|
[20] |
Zhang F, Wen Y, Guo X. Crispr/cas9 for genome editing: progress, implications and challenges [J]. Hum Mol Genet, 2014,23(R1):R40-46.
|
[21] |
Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the cas9 RNA-guided endonuclease [J]. Nat Biotechnol, 2013,31(3):230-232.
|
[22] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-rna-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012,337(6096):816-821.
|
[23] |
Lee CH, Huang CS, Chen CS, et al. Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells [J]. J Natl Cancer Inst, 2010,102(17):1322-1335.
|
[24] |
Wright AV, Nunez JK, Doudna JA. Biology and applications of crispr systems: harnessing nature’s toolbox for genome engineering [J]. Cell, 2016,164(1-2):29-44.
|
[25] |
Torres-Ruiz R, Rodriguez-Perales S. Crispr-cas9: a revolutionary tool for cancer modelling [J]. Int J Mol Sci, 2015,16(9):22151-22168.
|
[26] |
He F, Wang N, Li J, et al. High affinity monoclonal antibody targeting siglec-15 for cancer immunotherapy [J]. J Clin Transl Res, 2021,7(6):739-749.
|
[27] |
Barenwaldt A, Laubli H. The sialoglycan-siglec glyco-immune checkpoint-a target for improving innate and adaptive anti-cancer immunity [J]. Expert Opin Ther Targets, 2019,23(10):839-853.
|
[28] |
Shafi S, Aung TN, Xirou V, et al. Quantitative assessment of siglec-15 expression in lung, breast, head, and neck squamous cell carcinoma and bladder cancer [J]. Lab Invest, 2022,102(10):1143-1149.
|
[29] |
Ratan ZA, Son YJ, Haidere MF, et al. Crispr-cas9: a promising genetic engineering approach in cancer research [J]. Ther Adv Med Oncol, 2018,10:1758834018755089.
|
[30] |
Huang S, Ji Z, Xu J, et al. Siglec15 promotes the migration of thyroid carcinoma cells by enhancing the egfr protein stability [J]. Glycobiology, 2023,33(6):464-475.
|
[31] |
Takamiya R, Ohtsubo K, Takamatsu S, et al. The interaction between siglec-15 and tumor-associated sialyl-tn antigen enhances tgf-beta secretion from monocytes/macrophages through the dap12-syk pathway [J]. Glycobiology, 2013,23(2):178-187.
|
[32] |
Wendt MK, Tian M, Schiemann WP. Deconstructing the mechanisms and consequences of tgf-beta-induced emt during cancer progression [J]. Cell Tissue Res, 2012,347(1):85-101.
|
[33] |
Zhang Y, Alexander PB, Wang XF. TGF-beta family signaling in the control of cell proliferation and survival [J]. Cold Spring Harb Perspect Biol, 2017,9(4):a002145.
|
[34] |
Bauer J, Sporn JC, Cabral J, et al. Effects of activin and tgfbeta on p21 in colon cancer [J]. PLoS One, 2012,7(6):e39381.
|
[35] |
Lecanda J, Ganapathy V, D’Aquino-Ardalan C, et al. TGF-beta prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest [J]. Cell Cycle, 2009,8(5):742-756.
|
[36] |
Massague J. TGF-beta in cancer [J]. Cell, 2008,134(2):215-230.
|
[37] |
Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer [J]. J Clin Oncol, 2005,23(9):2078-2093.
|
[38] |
Seoane J, Pouponnot C, Staller P, et al. TGF-beta influences myc, miz-1 and smad to control the cdk inhibitor p15ink4b [J]. Nat Cell Biol, 2001,3(4):400-408.
|