切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 93 -101. doi: 10.3877/cma.j.issn.1674-0807.2024.02.006

论著

唾液酸结合Ig样凝集素15对三阴性乳腺癌细胞增殖、迁移和侵袭的影响
唐璐1, 徐静1, 樊俊1, 张哲1, 唐莉娟1, 罗文田1, 徐琰1,()   
  1. 1. 400042 重庆,陆军军医大学附属陆军特色医学中心乳腺甲状腺外科
  • 收稿日期:2023-10-19 出版日期:2024-04-01
  • 通信作者: 徐琰

Effect of sialic acid-binding Ig-like lectin 15 on proliferation, migration and invasion of triple negative breast cancer cells

Lu Tang1, Jing Xu1, Jun Fan1, Zhe Zhang1, Lijuan Tang1, Wentian Luo1, Yan Xu1,()   

  1. 1. Department of Breast and Thyroid Surgery, Army Medical Center, Army Medical University, Chongqing 400042, China
  • Received:2023-10-19 Published:2024-04-01
  • Corresponding author: Yan Xu
引用本文:

唐璐, 徐静, 樊俊, 张哲, 唐莉娟, 罗文田, 徐琰. 唾液酸结合Ig样凝集素15对三阴性乳腺癌细胞增殖、迁移和侵袭的影响[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 93-101.

Lu Tang, Jing Xu, Jun Fan, Zhe Zhang, Lijuan Tang, Wentian Luo, Yan Xu. Effect of sialic acid-binding Ig-like lectin 15 on proliferation, migration and invasion of triple negative breast cancer cells[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(02): 93-101.

目的

探讨唾液酸结合Ig样凝集素15(SIGLEC-15)基因对三阴性乳腺癌细胞增殖、迁移和侵袭过程的影响。

方法

分别设计特异性靶向人源性和鼠源性SIGLEC-15基因的3个单链引导RNA(sgRNA)序列,利用CRISPR/Cas9技术获得稳定敲除SIGLEC-15基因的MDA-MB-231单克隆细胞[sg-control(对照组)、sg-SIGLEC-15-1、sg-SIGLEC-15-2和sg-SIGLEC-15-3共4组]和稳定敲除SIGLEC-15基因的小鼠三阴性乳腺癌4T1细胞[NC(对照组)、KO1、KO2和KO3共4组]。采用qRT-PCR、Western blot实验检测8组单克隆细胞SIGLEC-15基因mRNA和蛋白表达水平,以评估SIGLEC-15基因的敲除效率。通过EdU增殖实验、划痕愈合实验、Transwell迁移实验和侵袭实验来评估SIGLEC-15基因敲除对MDA-MB-231细胞增殖、迁移侵袭功能的影响。将SIGLEC-15基因敲除的4T1细胞注射到BALB/c雌性小鼠皮下脂肪垫中,每2天1次评估小鼠的肿瘤体积,24 d后处死小鼠,测量肿瘤的体积和重量。SIGLEC-15的mRNA表达量、蛋白表达量、细胞增殖率、细胞划痕愈合率、迁移细胞数、侵袭细胞数、移植瘤体积和重量的2组间比较采用独立样本t检验,多组间比较采用单因素方差分析和重复测量方差分析,多组间两两比较采用Tukey法。

结果

NC、KO1、KO2和KO3这4组单克隆细胞株中SIGLEC-15基因的mRNA表达量分别为1.00±0.06、0.19±0.02、0.15±0.01和0.16±0.02,组间比较差异有统计学意义(F=405.807,P<0.001)。KO1、KO2和KO3这3组中SIGLEC-15蛋白的表达量也明显低于NC组(t=74.832、103.210、71.850,P<0.001)。sg-control、sg-SIGLEC-15-1、sg-SIGLEC-15-2和sg-SIGLEC-15-3这4组单克隆细胞中SIGLEC-15基因的mRNA表达量分别为1.00±0.02、0.20±0.02、0.14±0.01和0.21±0.01,组间比较差异有统计学意义(F=1 836.010,P<0.001)。SIGLEC-15基因敲除的这3组细胞中SIGLEC-15蛋白的表达量也明显低于sg-control组(t=23.810、24.370、23.960,P<0.001)。sg-control和sg-SIGLEC-15-2组的细胞增殖率分别为(42.88±0.90)%和(42.35±0.92)%,组间比较差异无统计学意义(t=0.713,P=0.515);2组的划痕愈合率[(62.33±0.72)%比(31.89±0.29)%,t=68.150,P<0.001]、迁移细胞数[(225.70±4.50)比(104.70±5.69),t=28.880,P<0.001]、侵袭细胞数[(157.00±2.00)比(57.33±4.16),t=37.380,P<0.001]比较,差异均有统计学意义。WT(注射未经任何处理的4T1细胞)、NC组和KO(KO2)组这3组小鼠乳腺癌移植瘤体积比较,差异有统计学意义(组间比较,F=13 859.000,P<0.001;不同时间点比较,F=3 444.021,P<0.001;交互作用,F=351.700,P<0.001),KO组移植瘤的肿瘤体积显著低于WT组与NC组(P均<0.001)。3组的瘤体重量分别为(750.08±21.99)mg、(758.60±18.70)mg和(443.80±14.52)mg,组间比较差异有统计学意义(F=462.000,P<0.001)。

结论

在三阴性乳腺癌细胞中,SIGLEC-15基因可能和肿瘤细胞体外迁移和侵袭能力有关,其作用机制值得深入研究。

Objective

To investigate the effect of Sialic acid-binding Ig-like lectin 15 (SIGLEC-15) gene on the proliferation, migration and invasion of triple negative breast cancer (TNBC) cells.

Methods

Three single-guide RNA (sgRNA) sequences specifically targeting human and murine SIGLEC-15 genes were designed. Stable SIGLEC-15 knockout MDA-MB-231 monoclonal cells (sg-control, sg-SIGLEC-15-1, sg-SIGLEC-15-2, and sg-SIGLEC-15-3 groups) and stable SIGLEC-15 knockout mouse TNBC 4T1 cells [normal control (NC group), KO1, KO2, and KO3 groups] were obtained using the CRISPR/Cas9 technology. The qRT-PCR and Western blot analysis were conducted to detect the mRNA and protein expression levels of SIGLEC-15 gene in eight monoclonal cell groups to evaluate the efficiency of SIGLEC-15 gene knockout. The effect of SIGLEC-15 gene knockout on the proliferation, migration and invasion abilities of MDA-MB-231 cells were assessed by EdU proliferation assay, wound healing assay, Transwell migration and invasion assay. The SIGLEC-15 gene-knocked-out 4T1 cells were injected subcutaneously into the adipose pads of female BALB/c mice, and the tumor volume was assessed every two days. After 24 days, the mice were euthanized, and the tumor volume and weight were measured. For quantitative data such as mRNA expression levels, protein expression levels, cell proliferation rates, cell scratch healing rates, number of migrating cells, number of invasive cells, volume and weight of xenograft tumors, comparisons between two groups were conducted using independent sample t-tests. Comparisons among multiple groups were performed using one-way ANOVA and repeated measures ANOVA, with pairwise comparisons among multiple groups conducted using Tukey’s method.

Results

The mRNA expression levels of SIGLEC-15 in the NC, KO1, KO2 and KO3 groups were 1.00±0.06, 0.19±0.02, 0.15±0.01 and 0.16±0.02, respectively, indicating a significant difference between groups (F=405.807, P<0.001). The expression levels of SIGLEC-15 protein also indicated a significant difference among four groups(t=74.832, 103.210, 71.850, P<0.001). The mRNA expression levels of SIGLEC-15 in sg-control, sg-SIGLEC-15-1, sg-SIGLEC-15-2 and sg-SIGLEC-15-3 groups were 1.00±0.02, 0.20±0.02, 0.14±0.01 and 0.21±0.01, respectively, indicating a significant difference between groups (F=1 836.010, P<0.001). The expression levels of SIGLEC-15 protein also indicated a significant difference among four groups(t=23.810, 24.370, 23.960, P<0.001). There was no significant difference in the proliferation rate between sg-control and sg-SIGLEC-15-2 groups [(42.88±0.90)% vs (42.35±0.92)%, t=0.713, P=0.515]; however, significant differences were observed in the wound healing rate (62.33±0.72)% vs (31.89±0.29)%, t=68.150, P<0.001), the number of migrating cells (225.70±4.50 vs 104.70±5.69, t=28.880, P<0.001) and the number of invading cells (157.00±2.00 vs 57.33±4.16, t=37.380, P<0.001). There were significant differences in tumor volumes among the WT (injected with untreated 4T1 cells), NC and KO(KO2) groups of mice with breast cancer xenografts (group comparison, F=13 859.000, P<0.001; different time points, F=3444.021, P<0.001; interaction, F=351.700, P<0.001). The tumor volume in the KO group was significantly lower than that in the WT and NC groups (both P<0.001). The tumor weights were (750.00±21.99) mg, (758.60±18.70) mg and (443.80±14.52) mg in the WT, NC and KO groups, respectively, with a significant difference between groups (F=462.000, P<0.001).

Conclusion

In triple negative breast cancer cells, the SIGLEC-15 gene may be associated with the migration and invasion abilities of tumor cells, and its mechanism of action warrants further study.

表1 人源性SIGLEC-15基因单链引导RNA寡核苷酸序列
表2 鼠源性SIGLEC-15基因单链引导RNA寡核苷酸序列
图1 人源性SIGLEC-15-sgRNA重组质粒测序结果 a、b、c图分别为人源SIGLEC-15-sgRNA1、SIGLEC-15-sgRNA2、SIGLEC-15-sgRNA3质粒的测序结果注:SIGLEC-15为唾液酸结合Ig样凝集素15;sgRNA为单链引导RNA
图2 Western blot检测4组MDA-MB-231单克隆细胞中SIGLEC-15蛋白表达水平注:SIGLEC-15为唾液酸结合Ig样凝集素15;GAPDH为甘油醛-3-磷酸脱氢酶;a为空载体对照sg-control;b、c、d分别为sg-SIGLEC-15-1、sg-SIGLEC-15-2和sg-SIGLEC-15-3基因敲除MDA-MB-231细胞
图3 SIGLEC-15基因敲除对乳腺癌MDA-MB-231细胞增殖能力的影响 a、b、c图分别为sg-control对照组细胞的DAPI染色、EdU染色和合并图;d、e、f图分别为sg-SIGLEC实验组细胞的DAPI染色、EdU染色和合并图注:SIGLEC-15为唾液酸结合Ig样凝集素15;DAPI为4′,6-二脒基-2-苯基吲哚;EdU为:5-乙炔基-2′-脱氧尿嘧啶核苷
图4 SIGLEC-15基因敲除MDA-MB-231细胞划痕愈合实验结果 a、b图分别为sg-control细胞划痕实验开始和24 h后对比图;c、d图分别为sg-SIGLEC-15细胞划痕实验开始和24 h后对比图注:SIGLEC-15为唾液酸结合Ig样凝集素15
图5 SIGLEC-15基因敲除MDA-MB-231细胞Transwell迁移实验结果 a、b图分别为sg-control和sg-SIGLEC-15细胞Transwell迁移实验结果,可见sg-SIGLEC-15细胞穿过Transwell小室的细胞数量明显少于sg-control组
图6 SIGLEC-15敲除的MDA-MB-231细胞Transwell侵袭实验结果 a、b图分别为sg-control和sg-SIGLEC-15细胞Transwell侵袭实验结果,可见sg-SIGLEC-15侵袭细胞明显少于sg-control组注:SIGLEC-15为唾液酸结合Ig样凝集素15
图7 鼠源性SIGLEC-15-sgRNA重组质粒测序结果 a、b、c图分别为鼠源SIGLEC-15-sgRNA1、SIGLEC-15-sgRNA2、SIGLEC-15-sgRNA3质粒的测序结果注:SIGLEC-15为唾液酸结合Ig样凝集素15;sgRNA为单链引导RNA
图8 Western blot检测4组4T1单克隆细胞中SIGLEC-15蛋白表达水平注:a为NC空载体对照;b、c、d分别为KO1、KO2和KO3基因敲除4T1细胞;SIGLEC-15为唾液酸结合Ig样凝集素15;GAPDH为甘油醛-3-磷酸脱氢酶
表3 3组小鼠原位移植瘤体积比较(mm3,±s)
图9 小鼠乳腺癌移植瘤瘤体图注:SIGLEC-15为唾液酸结合Ig样凝集素15;KO为注射SIGLEC-15基因稳定敲除的KO2组4T1细胞;NC为注射带有阴性载体的4T1细胞;WT为注射未经任何处理的4T1细胞
[1]
Bera A, Russ E, Manoharan MS, et al. Proteomic analysis of inflammatory biomarkers associated with breast cancer recurrence [J]. Mil Med, 2020185(Suppl 1):669-675.
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 202171(3):209-249.
[3]
郑荣寿,陈茹,韩冰峰,等. 2022年中国恶性肿瘤流行情况分析[J]. 中华中华肿瘤杂志202446(3):221-231.
[4]
Rodgers KM, Udesky JO, Rudel RA, et al. Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms [J]. Environ Res, 2018160:152-182.
[5]
Teegarden D, Romieu I, Lelievre SA. Redefining the impact of nutrition on breast cancer incidence: is epigenetics involved? [J]. Nutr Res Rev, 201225(1):68-95.
[6]
Wong GS, Rustgi AK. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis [J]. Br J Cancer, 2013108(4):755-761.
[7]
Box C, Rogers SJ, Mendiola M, et al. Tumour-microenvironmental interactions: paths to progression and targets for treatment [J]. Semin Cancer Biol, 201020(3):128-138.
[8]
Rashid S, Song D, Yuan J, et al. Molecular structure, expression, and the emerging role of siglec-15 in skeletal biology and cancer [J]. J Cell Physiol, 2022237(3):1711-1719.
[9]
Sun J, Lu Q, Sanmamed MF, et al. Siglec-15 as an emerging target for next-generation cancer immunotherapy [J]. Clin Cancer Res, 202127(3):680-688.
[10]
Quirino MWL, Pereira MC, Deodato de Souza MF, et al. Immunopositivity for siglec-15 in gastric cancer and its association with clinical and pathological parameters [J]. Eur J Histochem, 202165(1):3174.
[11]
Liu W, Ji Z, Wu B, et al. Siglec-15 promotes the migration of liver cancer cells by repressing lysosomal degradation of cd44 [J]. FEBS Lett, 2021595(17):2290-2302.
[12]
Fan MK, Zhang GC, Chen W, et al. Siglec-15 promotes tumor progression in osteosarcoma via dusp1/mapk pathway [J]. Front Oncol, 202111:710689.
[13]
Li QT, Huang ZZ, Chen YB, et al. Integrative analysis of siglec-15 mrna in human cancers based on data mining [J]. J Cancer, 202011(9):2453-2464.
[14]
Li B, Zhang B, Wang X, et al. Expression signature, prognosis value, and immune characteristics of siglec-15 identified by pan-cancer analysis [J]. Oncoimmunology, 20209(1):1807291.
[15]
Chu C, Yao K, Lu J, et al. Immunophenotypes based on the tumor immune microenvironment allow for unsupervised penile cancer patient stratification [J]. Cancers (Basel), 202012(7):1796.
[16]
Wang J, Sun J, Liu LN, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy [J]. Nat Med, 201925(4):656-666.
[17]
Angata T, Tabuchi Y, Nakamura K, et al. Siglec-15: an immune system siglec conserved throughout vertebrate evolution [J]. Glycobiology, 200717(8):838-846.
[18]
Angata T, Varki A. Discovery, classification, evolution and diversity of siglecs [J]. Mol Aspects Med, 202390:101117.
[19]
Angata T. Siglec-15: a potential regulator of osteoporosis, cancer, and infectious diseases [J]. J Biomed Sci, 202027(1):10.
[20]
Zhang F, Wen Y, Guo X. Crispr/cas9 for genome editing: progress, implications and challenges [J]. Hum Mol Genet, 201423(R1):R40-46.
[21]
Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the cas9 RNA-guided endonuclease [J]. Nat Biotechnol, 201331(3):230-232.
[22]
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-rna-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012337(6096):816-821.
[23]
Lee CH, Huang CS, Chen CS, et al. Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells [J]. J Natl Cancer Inst, 2010102(17):1322-1335.
[24]
Wright AV, Nunez JK, Doudna JA. Biology and applications of crispr systems: harnessing nature’s toolbox for genome engineering [J]. Cell, 2016164(1-2):29-44.
[25]
Torres-Ruiz R, Rodriguez-Perales S. Crispr-cas9: a revolutionary tool for cancer modelling [J]. Int J Mol Sci, 201516(9):22151-22168.
[26]
He F, Wang N, Li J, et al. High affinity monoclonal antibody targeting siglec-15 for cancer immunotherapy [J]. J Clin Transl Res, 20217(6):739-749.
[27]
Barenwaldt A, Laubli H. The sialoglycan-siglec glyco-immune checkpoint-a target for improving innate and adaptive anti-cancer immunity [J]. Expert Opin Ther Targets, 201923(10):839-853.
[28]
Shafi S, Aung TN, Xirou V, et al. Quantitative assessment of siglec-15 expression in lung, breast, head, and neck squamous cell carcinoma and bladder cancer [J]. Lab Invest, 2022102(10):1143-1149.
[29]
Ratan ZA, Son YJ, Haidere MF, et al. Crispr-cas9: a promising genetic engineering approach in cancer research [J]. Ther Adv Med Oncol, 201810:1758834018755089.
[30]
Huang S, Ji Z, Xu J, et al. Siglec15 promotes the migration of thyroid carcinoma cells by enhancing the egfr protein stability [J]. Glycobiology, 202333(6):464-475.
[31]
Takamiya R, Ohtsubo K, Takamatsu S, et al. The interaction between siglec-15 and tumor-associated sialyl-tn antigen enhances tgf-beta secretion from monocytes/macrophages through the dap12-syk pathway [J]. Glycobiology, 201323(2):178-187.
[32]
Wendt MK, Tian M, Schiemann WP. Deconstructing the mechanisms and consequences of tgf-beta-induced emt during cancer progression [J]. Cell Tissue Res, 2012347(1):85-101.
[33]
Zhang Y, Alexander PB, Wang XF. TGF-beta family signaling in the control of cell proliferation and survival [J]. Cold Spring Harb Perspect Biol, 20179(4):a002145.
[34]
Bauer J, Sporn JC, Cabral J, et al. Effects of activin and tgfbeta on p21 in colon cancer [J]. PLoS One, 20127(6):e39381.
[35]
Lecanda J, Ganapathy V, D’Aquino-Ardalan C, et al. TGF-beta prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest [J]. Cell Cycle, 20098(5):742-756.
[36]
Massague J. TGF-beta in cancer [J]. Cell, 2008134(2):215-230.
[37]
Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer [J]. J Clin Oncol, 200523(9):2078-2093.
[38]
Seoane J, Pouponnot C, Staller P, et al. TGF-beta influences myc, miz-1 and smad to control the cdk inhibitor p15ink4b [J]. Nat Cell Biol, 20013(4):400-408.
[1] 戴超超, 蒋天安, 包凌云, 谭艳娟. 乳腺局部结构扭曲病变的X线摄影与自动乳腺容积超声、乳腺增强磁共振的对比研究[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1237-1241.
[2] 罗润兰, 蒋文莉, 张艳, 罗渝昆. 超声高清微血流成像技术在鉴别乳腺良恶性结节中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1242-1247.
[3] 袁芃. 2023年HER-2阳性乳腺癌治疗进展[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 66-70.
[4] 梁旭, 宋国红. 2023年激素受体阳性/HER-2阴性乳腺癌治疗的研究进展[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 71-77.
[5] 陈文艳, 汪云, 魏松之. 晚期三阴性乳腺癌的精准治疗[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 78-84.
[6] 李朝阳, 任文琦, 侯令密, 蒋燕清, 刘沁豪, 赵永真, 张梅, 钱双强, 李金穗. T1-2N1miM0期乳腺癌患者乳房切除术后前哨淋巴结微转移的处理[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 85-92.
[7] 王丹, 朱见, 王军, 刘长瑞, 翟东亮, 刘懿心, 刘源源, 明珊珊, 贺青卿. 术中放射治疗在早期乳腺癌保留乳房手术中的应用[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 11-17.
[8] 薛雨柔, 孔洁, 朱龙玉, 韩慧娜, 张钧, 刘志坤. 局部治疗在乳腺癌术后孤立性局部区域复发中的作用[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 18-24.
[9] 张元欣, 黄君华, 但家强, 肖成, 黎君彦. NR4A2可作为预测乳腺癌复发转移的早期分子标志物[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 31-39.
[10] 穆星豆, 姜月, 张聚良. 细胞周期蛋白依赖性激酶4/6抑制剂在乳腺癌内分泌治疗中的应用[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 47-51.
[11] 黄璐璐, 叶萍, 韩宝三, 刘春苹. 电穿孔消融技术治疗乳腺癌的研究进展[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 52-56.
[12] 韩微, 马怡君, 周彩婷, 闫文卿, 刘雅新, 王磊. 同时双侧原发性乳腺大汗腺型导管原位癌一例[J]. 中华乳腺病杂志(电子版), 2024, 18(01): 60-63.
[13] 张茴, 李一, 代美玲. 植入物在乳房重建中的应用进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 349-352.
[14] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[15] 张志远, 李雯雯, 王帅, 古娇娇, 高佳茹, 贾琳娇, 李文涛. 超声影像组学在乳腺肿瘤中的应用进展[J]. 中华临床医师杂志(电子版), 2024, 18(01): 87-90.
阅读次数
全文


摘要