切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 183 -186. doi: 10.3877/cma.j.issn.1674-0807.2022.03.009

综述

乳腺癌易感基因1/2和聚腺苷二磷酸核糖聚合酶抑制剂研究进展
徐毅1, 陶新楠1, 刘晓青1, 张亚芬1,()   
  1. 1. 030001 太原,山西医科大学附属第五临床医学院乳腺外科
  • 收稿日期:2020-09-17 出版日期:2022-06-01
  • 通信作者: 张亚芬

Breast cancer susceptibility gene 1/2 and poly(ADP­ribose) polymerase inhibitors

Yi Xu1, Xinnan Tao1, Xiaoqing Liu1   

  • Received:2020-09-17 Published:2022-06-01
引用本文:

徐毅, 陶新楠, 刘晓青, 张亚芬. 乳腺癌易感基因1/2和聚腺苷二磷酸核糖聚合酶抑制剂研究进展[J]. 中华乳腺病杂志(电子版), 2022, 16(03): 183-186.

Yi Xu, Xinnan Tao, Xiaoqing Liu. Breast cancer susceptibility gene 1/2 and poly(ADP­ribose) polymerase inhibitors[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(03): 183-186.

遗传性乳腺癌占乳腺癌患者的5%,其中BRCA1/2基因是最早发现的乳腺癌易感基因,BRCA1/2基因主要在DNA损伤后的同源重组修复途径中发挥作用。聚腺苷二磷酸核糖聚合酶(PARP)抑制剂会阻止DNA损伤修复,在BRCA1/2基因缺陷的癌细胞中有重要作用。因此,笔者就BRCA1/2基因的研究进展以及PARP抑制剂作用机制进行综述。

[1]
Sung HFerlay JSiegel RL,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin202171(3):209-249.
[2]
Fan LStrasser-Weippl KLi JJ,et al. Breast cancer in China[J]. Lancet Oncol201415(7):e279-e289.
[3]
Shamoo Y. Structural insights into BRCA2 function[J]. Curr Opin Struct Biol200313(2):206-211.
[4]
Hall JLee MNewman B,et al. Linkage of early-onset familial breast cancer to chromosome 17q21[J]. Science1990250(4988):1684-1689.
[5]
Wooster RNeuhausen SMangion J,et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13[J]. Science1994265(5181):2088-2090.
[6]
Wooster RBignell GLancaster J,et al. Identification of the breast cancer susceptibility gene BRCA2[J]. Nature1995378(6559):789-792.
[7]
Roy RChun JPowell SN.BRCA1 and BRCA2: different roles in a common pathway of genome protection[J]. Nat Rev Cancer201212(1):68-78.
[8]
Stewart MDuncan EDCoronado E,et al. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms: Tuning BRCA1 ubiquitin ligase activity[J]. Protein Sci201726(3):475-483.
[9]
Tarsounas MSung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication[J]. Nat Rev Mol Cell Biol202021(5):284-299.
[10]
Clark SLRodriguez AMSnyder RR,et al. Structure-function of the tumor suppressor BRCA1[J]. Comput Struct Biotechnol J20121(1):e201204005.
[11]
Deng CXBrodie SG. Roles of BRCA1 and its interacting proteins[J]. Bioessays200022(8):728-737.
[12]
Leung CCGlover JN. BRCT domains: easy as one, two, three[J]. Cell Cycle201110(15):2461-2470.
[13]
Fernandes VCGolubeva VADi Pietro G,et al. Impact of amino acid substitutions at secondary structures in the BRCT domains of the tumor suppressor BRCA1: Implications for clinical annotation[J]. J Biol Chem2019294(15):5980-5992.
[14]
Pellegrini LYu DS, Lo T,et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex[J]. Nature2002420(6913):287-293.
[15]
Davies AAMasson JYMcIlwraith MJ,et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein[J]. Mol Cell20017(2):273-282.
[16]
Yang H. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure[J]. Science2002297(5588):1837-1848.
[17]
Patel KJYu VPLee H,et al. Involvement of BRCA2 in DNA repair[J]. Mol Cell19981(3):347-357.
[18]
Cox MMGoodman MFKreuzer KN,et al. The importance of repairing stalled replication forks[J]. Nature2000404(6773):37-41.
[19]
Moynahan MEPierce AJJasin M. BRCA2 is required for homology-directed repair of chromosomal breaks[J]. Mol Cell20017(2):263-272.
[20]
Tutt ABertwistle DValentine J,et al. Mutation in BRCA2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences[J]. EMBO J200120(17):4704-4716.
[21]
Xia FTaghian DGDeFrank JS,et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining[J]. Proc Natl Acad Sci USA200198(15):8644-8649.
[22]
Venkitaraman AR. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2[J]. Science2014343(6178):1470-1475.
[23]
Isono MNiimi AOike T,et al. BRCA1 directs the repair pathway to homologous recombination by promoting 53BP1 dephosphorylation[J]. Cell Rep201718(2):520-532.
[24]
Mirman ZLottersberger FTakai H,et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST-and polα-dependent fill-in[J]. Nature2018560(7716):112-116.
[25]
Zimmermann MLottersberger FBuonomo SB,et al. 53BP1 regulates DSB repair using Rif1 to control 5’ end resection[J]. Science2013339(6120):700-704.
[26]
Bunting SFCallén EWong N,et al. 53BP1 inhibits homologous recombination in BRCA1-deficient cells by blocking resection of DNA breaks[J]. Cell2010141(2):243-254.
[27]
Godet IGilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer[J]. Integr Cancer Sci Ther20174(1):10.
[28]
Ludwig KKNeuner JButler A,et al. Risk reduction and survival benefit of prophylactic surgery in BRCA mutation carriers, a systematic review[J]. Am J Surg2016212(4):660-669.
[29]
Domchek SKaunitz AM. Use of systemic hormone therapy in BRCA mutation carriers[J]: Menopause201623(9):1026-1027.
[30]
Zhong QPeng HLZhao X,et al. Effects of BRCA1-and BRCA2-related mutations on ovarian and breast cancer survival: a meta-analysis[J]. Clin Cancer Res201521(1):211-220.
[31]
Baretta ZMocellin SGoldin E,et al. Effect of BRCA germline mutations on breast cancer prognosis: A systematic review and meta-analysis[J]. Medicine201695(40):e4975.
[32]
Copson ERMaishman TCTapper WJ,et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study[J].Lancet Oncol201819(2):169-180.
[33]
Ghelli Luserna di Rora’AIacobucci IMartinelli G. The cell cycle checkpoint inhibitors in the treatment of leukemias[J]. J Hematol Oncol201710(1):77.
[34]
Zhu JJia WWu C,et al. Base excision repair gene polymorphisms and wilms tumor susceptibility[J]. EBioMedicine201833:88-93.
[35]
Germano GAmirouchene-Angelozzi NRospo G,et al. The clinical lmpact of the genomic landscape of mismatch repair-deficient cancers[J]. Cancer Discov20188(12):1518-1528.
[36]
Kaniecki KDe Tullio LGreene EC. A change of view: homologous recombination at single-molecule resolution[J]. Nat Rev Genet201819(4):191-207.
[37]
Balmus GPilger DCoates J,et al. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks[J]. Nat Commun201910(1):87.
[38]
Aparicio TBaer RGautier J. DNA double-strand break repair pathway choice and cancer[J]. DNA Repair201419:169-175.
[39]
Mengwasser KEAdeyemi ROLeng Y,et al. Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets[J]. Mol Cell201973(5):885-899.
[40]
Fong PCYap TABoss DS,et al. Poly(ADP)-Ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free Interval[J]. J Clin Oncol201028(15):2512-2519.
[41]
Robson MRuddy KJIm SA,et al. Patient-reported outcomes in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer receiving olaparib versus chemotherapy in the OlympiAD trial[J]. Eur J Cancer2019120:20-30.
[42]
Litton JKRugo HSEttl J,et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation[J]. N Engl J Med2018379(8):753-763.
[43]
U.S.Food&Drug Administration.FDA approves talazoparib for gBRCAm HER2-negative locally advanced or metastatic breast cancer[EB/OL].(2018-12-14)[2020-06-15].

URL    
[44]
Litton JKScoggins MEHess KR,et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant[J]. J Clin Oncol202038(5):388-394.
[45]
Han HSDiéras VRobson M,et al. Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patients with BRCA1/2 locally recurrent/metastatic breast cancer: randomized phase II study[J]. Ann Oncol201829(1):154-161.
[46]
Diéras VCHan HSKaufman B,et al. Phase III study of veliparib with carboplatin and paclitaxel in HER2-negative advanced/metastatic gBRCA-associated breast cancer[J]. Ann Oncol201930:v857-v858.
[47]
Loibl SO’Shaughnessy JUntch M,et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial[J]. Lancet Oncol201819(4):497-509.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[13] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[14] 屈洪波, 朱芳, 徐喆, 武楠, 何建怀, 王先明. 经肌间入路行锁骨下淋巴结清扫在局部晚期乳腺癌中的应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 510-513.
[15] 陈珊, 胡智强, 张月明, 唐定, 黎蒙, 赵帅. Orai1、Orai3在乳腺癌组织中的表达及与病理学指标的相关性分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 514-517.
阅读次数
全文


摘要