[1] |
Sung H,Ferlay J,Siegel RL,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249.
|
[2] |
Fan L,Strasser-Weippl K,Li JJ,et al. Breast cancer in China[J]. Lancet Oncol,2014,15(7):e279-e289.
|
[3] |
Shamoo Y. Structural insights into BRCA2 function[J]. Curr Opin Struct Biol,2003,13(2):206-211.
|
[4] |
Hall J,Lee M,Newman B,et al. Linkage of early-onset familial breast cancer to chromosome 17q21[J]. Science,1990,250(4988):1684-1689.
|
[5] |
Wooster R,Neuhausen S,Mangion J,et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13[J]. Science,1994,265(5181):2088-2090.
|
[6] |
Wooster R,Bignell G,Lancaster J,et al. Identification of the breast cancer susceptibility gene BRCA2[J]. Nature,1995,378(6559):789-792.
|
[7] |
Roy R,Chun J,Powell SN.BRCA1 and BRCA2: different roles in a common pathway of genome protection[J]. Nat Rev Cancer,2012,12(1):68-78.
|
[8] |
Stewart M,Duncan ED,Coronado E,et al. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms: Tuning BRCA1 ubiquitin ligase activity[J]. Protein Sci,2017,26(3):475-483.
|
[9] |
Tarsounas M,Sung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication[J]. Nat Rev Mol Cell Biol,2020,21(5):284-299.
|
[10] |
Clark SL,Rodriguez AM,Snyder RR,et al. Structure-function of the tumor suppressor BRCA1[J]. Comput Struct Biotechnol J,2012,1(1):e201204005.
|
[11] |
Deng CX,Brodie SG. Roles of BRCA1 and its interacting proteins[J]. Bioessays,2000,22(8):728-737.
|
[12] |
Leung CC,Glover JN. BRCT domains: easy as one, two, three[J]. Cell Cycle,2011,10(15):2461-2470.
|
[13] |
Fernandes VC,Golubeva VA,Di Pietro G,et al. Impact of amino acid substitutions at secondary structures in the BRCT domains of the tumor suppressor BRCA1: Implications for clinical annotation[J]. J Biol Chem,2019,294(15):5980-5992.
|
[14] |
Pellegrini L,Yu DS, Lo T,et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex[J]. Nature,2002,420(6913):287-293.
|
[15] |
Davies AA,Masson JY,McIlwraith MJ,et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein[J]. Mol Cell,2001,7(2):273-282.
|
[16] |
Yang H. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure[J]. Science,2002,297(5588):1837-1848.
|
[17] |
Patel KJ,Yu VP,Lee H,et al. Involvement of BRCA2 in DNA repair[J]. Mol Cell,1998,1(3):347-357.
|
[18] |
Cox MM,Goodman MF,Kreuzer KN,et al. The importance of repairing stalled replication forks[J]. Nature,2000,404(6773):37-41.
|
[19] |
Moynahan ME,Pierce AJ,Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks[J]. Mol Cell,2001,7(2):263-272.
|
[20] |
Tutt A,Bertwistle D,Valentine J,et al. Mutation in BRCA2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences[J]. EMBO J,2001,20(17):4704-4716.
|
[21] |
Xia F,Taghian DG,DeFrank JS,et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining[J]. Proc Natl Acad Sci USA,2001,98(15):8644-8649.
|
[22] |
Venkitaraman AR. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2[J]. Science,2014,343(6178):1470-1475.
|
[23] |
Isono M,Niimi A,Oike T,et al. BRCA1 directs the repair pathway to homologous recombination by promoting 53BP1 dephosphorylation[J]. Cell Rep,2017,18(2):520-532.
|
[24] |
Mirman Z,Lottersberger F,Takai H,et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST-and polα-dependent fill-in[J]. Nature,2018,560(7716):112-116.
|
[25] |
Zimmermann M,Lottersberger F,Buonomo SB,et al. 53BP1 regulates DSB repair using Rif1 to control 5’ end resection[J]. Science,2013,339(6120):700-704.
|
[26] |
Bunting SF,Callén E,Wong N,et al. 53BP1 inhibits homologous recombination in BRCA1-deficient cells by blocking resection of DNA breaks[J]. Cell,2010,141(2):243-254.
|
[27] |
Godet I,Gilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer[J]. Integr Cancer Sci Ther,2017,4(1):10.
|
[28] |
Ludwig KK,Neuner J,Butler A,et al. Risk reduction and survival benefit of prophylactic surgery in BRCA mutation carriers, a systematic review[J]. Am J Surg,2016,212(4):660-669.
|
[29] |
Domchek S,Kaunitz AM. Use of systemic hormone therapy in BRCA mutation carriers[J]: Menopause,2016,23(9):1026-1027.
|
[30] |
Zhong Q,Peng HL,Zhao X,et al. Effects of BRCA1-and BRCA2-related mutations on ovarian and breast cancer survival: a meta-analysis[J]. Clin Cancer Res,2015,21(1):211-220.
|
[31] |
Baretta Z,Mocellin S,Goldin E,et al. Effect of BRCA germline mutations on breast cancer prognosis: A systematic review and meta-analysis[J]. Medicine,2016,95(40):e4975.
|
[32] |
Copson ER,Maishman TC,Tapper WJ,et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study[J].Lancet Oncol,2018,19(2):169-180.
|
[33] |
Ghelli Luserna di Rora’A,Iacobucci I,Martinelli G. The cell cycle checkpoint inhibitors in the treatment of leukemias[J]. J Hematol Oncol,2017,10(1):77.
|
[34] |
Zhu J,Jia W,Wu C,et al. Base excision repair gene polymorphisms and wilms tumor susceptibility[J]. EBioMedicine,2018,33:88-93.
|
[35] |
Germano G,Amirouchene-Angelozzi N,Rospo G,et al. The clinical lmpact of the genomic landscape of mismatch repair-deficient cancers[J]. Cancer Discov,2018,8(12):1518-1528.
|
[36] |
Kaniecki K,De Tullio L,Greene EC. A change of view: homologous recombination at single-molecule resolution[J]. Nat Rev Genet,2018,19(4):191-207.
|
[37] |
Balmus G,Pilger D,Coates J,et al. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks[J]. Nat Commun,2019,10(1):87.
|
[38] |
Aparicio T,Baer R,Gautier J. DNA double-strand break repair pathway choice and cancer[J]. DNA Repair,2014,19:169-175.
|
[39] |
Mengwasser KE,Adeyemi RO,Leng Y,et al. Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets[J]. Mol Cell,2019,73(5):885-899.
|
[40] |
Fong PC,Yap TA,Boss DS,et al. Poly(ADP)-Ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free Interval[J]. J Clin Oncol,2010,28(15):2512-2519.
|
[41] |
Robson M,Ruddy KJ,Im SA,et al. Patient-reported outcomes in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer receiving olaparib versus chemotherapy in the OlympiAD trial[J]. Eur J Cancer,2019,120:20-30.
|
[42] |
Litton JK,Rugo HS,Ettl J,et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation[J]. N Engl J Med,2018,379(8):753-763.
|
[43] |
U.S.Food&Drug Administration.FDA approves talazoparib for gBRCAm HER2-negative locally advanced or metastatic breast cancer[EB/OL].(2018-12-14)[2020-06-15].
URL
|
[44] |
Litton JK,Scoggins ME,Hess KR,et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant[J]. J Clin Oncol,2020,38(5):388-394.
|
[45] |
Han HS,Diéras V,Robson M,et al. Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patients with BRCA1/2 locally recurrent/metastatic breast cancer: randomized phase II study[J]. Ann Oncol,2018,29(1):154-161.
|
[46] |
Diéras VC,Han HS,Kaufman B,et al. Phase III study of veliparib with carboplatin and paclitaxel in HER2-negative advanced/metastatic gBRCA-associated breast cancer[J]. Ann Oncol,2019,30:v857-v858.
|
[47] |
Loibl S,O’Shaughnessy J,Untch M,et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial[J]. Lancet Oncol,2018,19(4):497-509.
|