切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 183 -186. doi: 10.3877/cma.j.issn.1674-0807.2022.03.009

综述

乳腺癌易感基因1/2和聚腺苷二磷酸核糖聚合酶抑制剂研究进展
徐毅1, 陶新楠1, 刘晓青1, 张亚芬1,()   
  1. 1. 030001 太原,山西医科大学附属第五临床医学院乳腺外科
  • 收稿日期:2020-09-17 出版日期:2022-06-01
  • 通信作者: 张亚芬

Breast cancer susceptibility gene 1/2 and poly(ADP­ribose) polymerase inhibitors

Yi Xu1, Xinnan Tao1, Xiaoqing Liu1   

  • Received:2020-09-17 Published:2022-06-01
引用本文:

徐毅, 陶新楠, 刘晓青, 张亚芬. 乳腺癌易感基因1/2和聚腺苷二磷酸核糖聚合酶抑制剂研究进展[J/OL]. 中华乳腺病杂志(电子版), 2022, 16(03): 183-186.

Yi Xu, Xinnan Tao, Xiaoqing Liu. Breast cancer susceptibility gene 1/2 and poly(ADP­ribose) polymerase inhibitors[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(03): 183-186.

遗传性乳腺癌占乳腺癌患者的5%,其中BRCA1/2基因是最早发现的乳腺癌易感基因,BRCA1/2基因主要在DNA损伤后的同源重组修复途径中发挥作用。聚腺苷二磷酸核糖聚合酶(PARP)抑制剂会阻止DNA损伤修复,在BRCA1/2基因缺陷的癌细胞中有重要作用。因此,笔者就BRCA1/2基因的研究进展以及PARP抑制剂作用机制进行综述。

[1]
Sung HFerlay JSiegel RL,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin202171(3):209-249.
[2]
Fan LStrasser-Weippl KLi JJ,et al. Breast cancer in China[J]. Lancet Oncol201415(7):e279-e289.
[3]
Shamoo Y. Structural insights into BRCA2 function[J]. Curr Opin Struct Biol200313(2):206-211.
[4]
Hall JLee MNewman B,et al. Linkage of early-onset familial breast cancer to chromosome 17q21[J]. Science1990250(4988):1684-1689.
[5]
Wooster RNeuhausen SMangion J,et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13[J]. Science1994265(5181):2088-2090.
[6]
Wooster RBignell GLancaster J,et al. Identification of the breast cancer susceptibility gene BRCA2[J]. Nature1995378(6559):789-792.
[7]
Roy RChun JPowell SN.BRCA1 and BRCA2: different roles in a common pathway of genome protection[J]. Nat Rev Cancer201212(1):68-78.
[8]
Stewart MDuncan EDCoronado E,et al. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms: Tuning BRCA1 ubiquitin ligase activity[J]. Protein Sci201726(3):475-483.
[9]
Tarsounas MSung P. The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication[J]. Nat Rev Mol Cell Biol202021(5):284-299.
[10]
Clark SLRodriguez AMSnyder RR,et al. Structure-function of the tumor suppressor BRCA1[J]. Comput Struct Biotechnol J20121(1):e201204005.
[11]
Deng CXBrodie SG. Roles of BRCA1 and its interacting proteins[J]. Bioessays200022(8):728-737.
[12]
Leung CCGlover JN. BRCT domains: easy as one, two, three[J]. Cell Cycle201110(15):2461-2470.
[13]
Fernandes VCGolubeva VADi Pietro G,et al. Impact of amino acid substitutions at secondary structures in the BRCT domains of the tumor suppressor BRCA1: Implications for clinical annotation[J]. J Biol Chem2019294(15):5980-5992.
[14]
Pellegrini LYu DS, Lo T,et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex[J]. Nature2002420(6913):287-293.
[15]
Davies AAMasson JYMcIlwraith MJ,et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein[J]. Mol Cell20017(2):273-282.
[16]
Yang H. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure[J]. Science2002297(5588):1837-1848.
[17]
Patel KJYu VPLee H,et al. Involvement of BRCA2 in DNA repair[J]. Mol Cell19981(3):347-357.
[18]
Cox MMGoodman MFKreuzer KN,et al. The importance of repairing stalled replication forks[J]. Nature2000404(6773):37-41.
[19]
Moynahan MEPierce AJJasin M. BRCA2 is required for homology-directed repair of chromosomal breaks[J]. Mol Cell20017(2):263-272.
[20]
Tutt ABertwistle DValentine J,et al. Mutation in BRCA2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences[J]. EMBO J200120(17):4704-4716.
[21]
Xia FTaghian DGDeFrank JS,et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining[J]. Proc Natl Acad Sci USA200198(15):8644-8649.
[22]
Venkitaraman AR. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2[J]. Science2014343(6178):1470-1475.
[23]
Isono MNiimi AOike T,et al. BRCA1 directs the repair pathway to homologous recombination by promoting 53BP1 dephosphorylation[J]. Cell Rep201718(2):520-532.
[24]
Mirman ZLottersberger FTakai H,et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST-and polα-dependent fill-in[J]. Nature2018560(7716):112-116.
[25]
Zimmermann MLottersberger FBuonomo SB,et al. 53BP1 regulates DSB repair using Rif1 to control 5’ end resection[J]. Science2013339(6120):700-704.
[26]
Bunting SFCallén EWong N,et al. 53BP1 inhibits homologous recombination in BRCA1-deficient cells by blocking resection of DNA breaks[J]. Cell2010141(2):243-254.
[27]
Godet IGilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer[J]. Integr Cancer Sci Ther20174(1):10.
[28]
Ludwig KKNeuner JButler A,et al. Risk reduction and survival benefit of prophylactic surgery in BRCA mutation carriers, a systematic review[J]. Am J Surg2016212(4):660-669.
[29]
Domchek SKaunitz AM. Use of systemic hormone therapy in BRCA mutation carriers[J]: Menopause201623(9):1026-1027.
[30]
Zhong QPeng HLZhao X,et al. Effects of BRCA1-and BRCA2-related mutations on ovarian and breast cancer survival: a meta-analysis[J]. Clin Cancer Res201521(1):211-220.
[31]
Baretta ZMocellin SGoldin E,et al. Effect of BRCA germline mutations on breast cancer prognosis: A systematic review and meta-analysis[J]. Medicine201695(40):e4975.
[32]
Copson ERMaishman TCTapper WJ,et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study[J].Lancet Oncol201819(2):169-180.
[33]
Ghelli Luserna di Rora’AIacobucci IMartinelli G. The cell cycle checkpoint inhibitors in the treatment of leukemias[J]. J Hematol Oncol201710(1):77.
[34]
Zhu JJia WWu C,et al. Base excision repair gene polymorphisms and wilms tumor susceptibility[J]. EBioMedicine201833:88-93.
[35]
Germano GAmirouchene-Angelozzi NRospo G,et al. The clinical lmpact of the genomic landscape of mismatch repair-deficient cancers[J]. Cancer Discov20188(12):1518-1528.
[36]
Kaniecki KDe Tullio LGreene EC. A change of view: homologous recombination at single-molecule resolution[J]. Nat Rev Genet201819(4):191-207.
[37]
Balmus GPilger DCoates J,et al. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks[J]. Nat Commun201910(1):87.
[38]
Aparicio TBaer RGautier J. DNA double-strand break repair pathway choice and cancer[J]. DNA Repair201419:169-175.
[39]
Mengwasser KEAdeyemi ROLeng Y,et al. Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets[J]. Mol Cell201973(5):885-899.
[40]
Fong PCYap TABoss DS,et al. Poly(ADP)-Ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free Interval[J]. J Clin Oncol201028(15):2512-2519.
[41]
Robson MRuddy KJIm SA,et al. Patient-reported outcomes in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer receiving olaparib versus chemotherapy in the OlympiAD trial[J]. Eur J Cancer2019120:20-30.
[42]
Litton JKRugo HSEttl J,et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation[J]. N Engl J Med2018379(8):753-763.
[43]
U.S.Food&Drug Administration.FDA approves talazoparib for gBRCAm HER2-negative locally advanced or metastatic breast cancer[EB/OL].(2018-12-14)[2020-06-15].

URL    
[44]
Litton JKScoggins MEHess KR,et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant[J]. J Clin Oncol202038(5):388-394.
[45]
Han HSDiéras VRobson M,et al. Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patients with BRCA1/2 locally recurrent/metastatic breast cancer: randomized phase II study[J]. Ann Oncol201829(1):154-161.
[46]
Diéras VCHan HSKaufman B,et al. Phase III study of veliparib with carboplatin and paclitaxel in HER2-negative advanced/metastatic gBRCA-associated breast cancer[J]. Ann Oncol201930:v857-v858.
[47]
Loibl SO’Shaughnessy JUntch M,et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial[J]. Lancet Oncol201819(4):497-509.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?