切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 179 -182. doi: 10.3877/cma.j.issn.1674-0807.2022.03.008

综述

促性腺激素释放激素受体在乳腺癌中的表达与作用及其靶向药物研究进展
卢静璐1, 吴子平1, 陆劲松1,()   
  1. 1. 200127 上海交通大学医学院附属仁济医院乳腺外科
  • 收稿日期:2020-03-23 出版日期:2022-06-01
  • 通信作者: 陆劲松

Expression and role of gonadotropin­releasing hormone receptor in breast cancer and its targeted drugs

Jinglu Lu1, Ziping Wu1, Jinsong Lu1()   

  • Received:2020-03-23 Published:2022-06-01
  • Corresponding author: Jinsong Lu
引用本文:

卢静璐, 吴子平, 陆劲松. 促性腺激素释放激素受体在乳腺癌中的表达与作用及其靶向药物研究进展[J/OL]. 中华乳腺病杂志(电子版), 2022, 16(03): 179-182.

Jinglu Lu, Ziping Wu, Jinsong Lu. Expression and role of gonadotropin­releasing hormone receptor in breast cancer and its targeted drugs[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(03): 179-182.

促性腺激素释放激素受体(GnRHR)是一种G蛋白偶联受体,通常表达于垂体、胎盘等,已知有2种类型,在人体内主要为GnRHR-I型。垂体GnRHR与其配体促性腺激素释放激素(GnRH)结合可调节性腺功能。目前,文献报道在多种恶性肿瘤(乳腺癌、卵巢癌、子宫内膜癌、前列腺癌、胰腺癌、肝癌等)细胞中均有GnRHR表达,但功能与垂体表面不同。GnRHR与GnRH类似物(GnRHa)结合后,与Gi蛋白偶联,激活MAPK信号通路及下游的ERK、JNK、p38MAPK信号通路,减少细胞有丝分裂,促进细胞黏附分子表达及细胞骨架重构,促进caspase-3等表达水平增加,从而抑制乳腺癌细胞的增殖、侵袭,并可诱导凋亡。GnRHa又可以分为激动剂(GnRH-a)和抑制剂(GnRH-ant)。目前,GnRH-a已广泛应用于乳腺癌等患者的去势治疗,而GnRH-ant及其他GnRH偶联药物正在进一步研究中。笔者从GnRHR在乳腺癌细胞中的表达、功能、信号转导及其与肿瘤生物学行为的关系,以及针对该受体的新型靶向治疗药物等方面进行综述。

[1]
Cheng CK, Leung PC, et al. Molecular biology of gonadotropin-releasing hormone (GnRH)-Ⅰ,GnRH-Ⅱ,and their receptors in humans[J]. Endocr Rev, 2005, 26(2): 283-306.
[2]
Millar RP, Lu ZL, Pawson AJ, et al. Gonadotropin-releasing hormone receptors[J]. Endocr Rev, 2004, 25(2): 235-275.
[3]
Roch GJ, Rusby ER, Sherwood NM,et al. GnRH receptors and peptides: skating backward[J]. Gen Comp Endocrinol, 2014, 209: 118-134.
[4]
Cheung LW, Wong AS. Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues[J]. FEBS J, 2008275(22):5479-5495.
[5]
Neill JD. GnRH and GnRH receptor genes in the human genome[J]. Endocrinology, 2002, 143(3):737-743.
[6]
Lin LS, Roberts VJ, Yen SS. Expression of human gonadotropin-releasing hormone receptor gene in the placenta and its functional relationship to human chorionic gonadotropin secretion[J]. J Clin Endocrinol Metab, 1995, 80(2):580-585.
[7]
Peng C, Fan NC, Ligier M, et al. Expression and regulation of gonadotropin-releasing hormone (GnRH) and GnRH receptor messenger ribonucleic acids in human granulosa-luteal cells[J]. Endocrinology, 1994, 135(5): 1740-1746.
[8]
Kakar SS, Grizzle WE, Neill JD. The nucleotide sequences of human GnRH receptors in breast and ovarian tumors are identical with that found in pituitary[J]. Mol Cell Endocrinol, 1994, 106(1/2):145-149.
[9]
Moriya T, Suzuki T, Pilichowska M, et al. Immunohistochemical expression of gonadotropin releasing hormone receptor in human breast carcinoma[J]. Pathol Int, 2001, 51(5):333-337.
[10]
Pazaitou-Panayiotou K, Chemonidou C, Poupi A, et al. Gonadotropin-releasing hormone neuropeptides and receptor in human breast cancer: correlation to poor prognosis parameters[J]. Peptides, 2013, 42:15-24.
[11]
Grundker C, Emons G. The role of gonadotropin-releasing hormone in cancer cell proliferation and metastasis[J]. Front Endocrinol (Lausanne), 2017, 8: 187.
[12]
Baumann KH, Kiesel L, Kaufmann M, et al. Characterization of binding sites for a GnRH-agonist (buserelin) in human breast cancer biopsies and their distribution in relation to tumor parameters[J]. Breast Cancer Res Treat199325(1):37-46.
[13]
Seitz S, Buchholz S, Schally AV, et al. Triple negative breast cancers express receptors for LHRH and are potential therapeutic targets for cytotoxic LHRH-analogs, AEZS 108 and AEZS 125[J]. BMC Cancer, 2014, 14: 847.
[14]
Buchholz S, Seitz S, Schally AV, et al. Triple-negative breast cancers express receptors for luteinizing hormone-releasing hormone (LHRH) and respond to LHRH antagonist cetrorelix with growth inhibition[J]. Int J Oncol, 2009, 35(4): 789-796.
[15]
Kottler ML, Starzec A, Carre MC, et al. The genes for gonadotropin-releasing hormone and its receptor are expressed in human breast with fibrocystic disease and cancer[J]. Int J Cancer, 1997, 71(4): 595-599.
[16]
Kim KY, Choi KC, Auersperg N, et al. Mechanism of gonadotropin-releasing hormone (GnRH)-I and -II-induced cell growth inhibition in ovarian cancer cells: role of the GnRH-I receptor and protein kinase C pathway[J]. Endocr Relat Cancer, 2006, 13(1): 211-220.
[17]
Morgan K, Stewart AJ, Miller N, et al. Gonadotropin-releasing hormone receptor levels and cell context affect tumor cell responses to agonist in vitro and in vivo[J]. Cancer Res, 2008, 68(15): 6331-6340.
[18]
Fister S, Günthert AR, Aicher B, et al. GnRH-II antagonists induce apoptosis in human endometrial, ovarian, and breast cancer cells via activation of stress-induced MAPKs p38 and JNK and proapoptotic protein Bax[J]. Cancer Res, 2009, 69(16): 6473-6481.
[19]
Sperduti S, Limoncella S, Lazzaretti C, et al. GnRH antagonists produce differential modulation of the signaling pathways mediated by GnRH receptors[J]. Int J Mol Sci, 2019, 20(22): 5548.
[20]
Aguilar-Rojas A, Maya-Núñez G, Huerta-Reyes M, et al. Activation of human gonadotropin-releasing hormone receptor promotes down regulation of ARHGAP18 and regulates the cell invasion of MDA-MB-231 cells[J]. Mol Cell Endocrinol, 2018, 460: 94-103.
[21]
Aguilar-Rojas A, Huerta-Reyes M, Maya-Núñez G, et al. Gonadotropin-releasing hormone receptor activates GTPase RhoA and inhibits cell invasion in the breast cancer cell line MDA-MB-231[J]. BMC Cancer, 2012, 12: 550.
[22]
Gründker C, Bauerschmitz G, Schubert A, et al. Invasion and increased expression of S100A4 and CYR61 in mesenchymal transformed breast cancer cells is downregulated by GnRH[J]. Int J Oncol, 2016, 48(6):2713-2721.
[23]
Grundker CFöst C, Fister S, et al. Gonadotropin-releasing hormone type II antagonist induces apoptosis in MCF-7 and triple-negative MDA-MB-231 human breast cancer cells in vitro and in vivo[J]. Breast Cancer Res, 2010, 12(4): R49.
[24]
Torrisi R, Bagnardi V, Rotmensz N, et al. Letrozole plus GnRH analogue as preoperative and adjuvant therapy in premenopausal women with ER positive locally advanced breast cancer[J]. Breast Cancer Res Treat, 2011, 126(2): 431-441.
[25]
Francis PA, Pagani O, Fleming GF, et al. Tailoring adjuvant endocrine therapy for premenopausal breast cancer[J]. N Engl J Med, 2018, 379(2): 122-137.
[26]
Dellapasqua S, Gray KP, Munzone E, et al. Neoadjuvant degarelix versus triptorelin in premenopausal patients who receive letrozole for locally advanced endocrine-responsive breast cancer: a randomized phase II trial[J]. J Clin Oncol, 2019, 37(5): 386-395.
[27]
Moore HC, Unger JM, Phillips KA, et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy[J]. N Engl J Med, 2015, 372(10): 923-932.
[28]
Kim HJ, Yoon TI, Chae HD, et al. Concurrent gonadotropin-releasing hormone agonist administration with chemotherapy improves neoadjuvant chemotherapy responses in young premenopausal breast cancer patients[J]. J Breast Cancer, 2015, 18(4): 365-370.
[29]
Emons G, Sindermann H, Engel J, et al. Luteinizing hormone-releasing hormone receptor-targeted chemotherapy using AN-152[J]. Neuroendocrinology, 2009, 90(1): 15-18.
[30]
Emons G, Gorchev G, Harter P, et al. Efficacy and safety of AEZS-108 (LHRH agonist linked to doxorubicin) in women with advanced or recurrent endometrial cancer expressing LHRH receptors: a multicenter phase 2 trial (AGO-GYN5) [J]. Int J Gynecol Cancer, 2014, 24(2):260-265.
[31]
Argyros O, Karampelas T, Asvos X, et al. Peptide-drug conjugate GnRH-sunitinib targets angiogenesis selectively at the site of action to inhibit tumor growth[J]. Cancer Res, 2016, 76(5): 1181-1192.
[32]
Kovács M, Vincze B, Horváth JE, et al. Structure-activity study on the LH- and FSH-releasing and anticancer effects of gonadotropin-releasing hormone (GnRH)-Ⅲ analogs[J]. Peptides, 2007, 28(4): 821-829.
[33]
Ranđelović I, Schuster S, Kapuvári B, et al. Improved in vivo anti-tumor and anti-metastatic effect of GnRH-III-daunorubicin analogs on colorectal and breast carcinoma bearing mice[J]. Int J Mol Sci, 2019, 20(19): 4763.
[34]
Middleton G, Silcocks P, Cox T, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2014, 15(8): 829-840.
[35]
Kim JW, Yadav DK, Kim SJ, et al. Anti-cancer effect of GV1001 for prostate cancer: function as a ligand of GnRHR[J]. Endocr Relat Cancer, 2019, 26(2): 147-162.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要