切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 34 -38. doi: 10.3877/cma.j.issn.1674-0807.2022.01.006

综述

微RNA对乳腺癌细胞代谢的影响
付柏杨1, 陈晰1, 梁文龙1, 王瑶1, 张建国1,()   
  1. 1. 150086 哈尔滨医科大学附属第二医院乳腺外科
  • 收稿日期:2021-12-01 出版日期:2022-02-01
  • 通信作者: 张建国
  • 基金资助:
    国家自然科学基金资助项目(81972469)

Effect of microRNA on metabolism of breast cancer cells

Baiyang Fu1, Xi Chen1, Wenlong Liang1   

  • Received:2021-12-01 Published:2022-02-01
引用本文:

付柏杨, 陈晰, 梁文龙, 王瑶, 张建国. 微RNA对乳腺癌细胞代谢的影响[J]. 中华乳腺病杂志(电子版), 2022, 16(01): 34-38.

Baiyang Fu, Xi Chen, Wenlong Liang. Effect of microRNA on metabolism of breast cancer cells[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(01): 34-38.

乳腺癌是全世界女性中发病率、病死率最高的恶性肿瘤。尽管关于乳腺癌生物代谢过程的研究越来越多,但是肿瘤基因对代谢重编程的影响尚不明确。微RNA(miRNA)是一类具有调控功能的小分子非编码核糖核酸,与乳腺癌的多种生物学过程相关。笔者从糖、氨基酸、蛋白质及其共同的代谢通路切入,系统描述了miRNA在乳腺癌代谢中的作用,并且总结miRNA对乳腺癌诊断、治疗、预后的临床意义和当前研究的不足。

表1 miRNA在乳腺癌中的表达情况及其调控的代谢酶
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
[3]
Warburg O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314.
[4]
Du Y, Wei N, Ma R, et al. A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer[J]. Cell Death Dis, 2020, 11(9): 731.
[5]
Guda MR, Asuthkar S, Labak CM, et al. Targeting PDK4 inhibits breast cancer metabolism[J]. Am J Cancer Res, 2018, 8(9): 1725-1738.
[6]
Ren S, Liu J, Feng Y, et al. Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia[J]. J Exp Clin Cancer Res, 2019, 38(1): 388.
[7]
Singh R, Yadav V, Kumar S, et al. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1[J]. Sci Rep, 2015, 5: 17 454.
[8]
Lao-On U, Attwood PV, Jitrapakdee S. Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection[J]. J Mol Med (Berl), 2018, 96(3-4): 237-247.
[9]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
[10]
Eastlack SC, Dong S, Ivan C, et al. Suppression of PDHX by microRNA-27b deregulates cell metabolism and promotes growth in breast cancer[J]. Mol Cancer, 2018, 17(1): 100.
[11]
Chen B, Tang H, Liu X, et al. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer[J]. Cancer Lett, 2015, 356(2 Pt B): 410-417.
[12]
Li L, Kang L, Zhao W, et al. miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect[J]. Cancer Lett, 2017, 400: 89-98.
[13]
Jiang S, Zhang LF, Zhang HW, et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells[J]. EMBO J, 2012, 31(8): 1985-98.
[14]
Ma F, Zhang L, Ma L, et al. MiR-361-5p inhibits glycolytic metabolism, proliferation and invasion of breast cancer by targeting FGFR1 and MMP-1[J]. J Exp Clin Cancer Res, 2017, 36(1): 158.
[15]
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation[J]. Annu Rev Cell Dev Biol, 2011, 27: 441-464.
[16]
Stringer DM, Zahradka P, Taylor CG. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes[J]. Nutr Rev, 2015, 73(3): 140-154.
[17]
Kim S, Lee E, Jung J, et al. microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer[J]. Oncogene, 2018, 37(22): 2982-2991.
[18]
Shi Y, Zhang Y, Ran F, et al. Let-7a-5p inhibits triple-negative breast tumor growth and metastasis through GLUT12-mediated warburg effect[J]. Cancer Lett, 2020, 495: 53-65.
[19]
He Y, Deng F, Zhao S, et al. Analysis of miRNA-mRNA network reveals miR-140-5p as a suppressor of breast cancer glycolysis via targeting GLUT1[J]. Epigenomics, 2019, 11(9): 1021-1036.
[20]
Li Y, Li H, Wang W, et al. LINC00346 regulates glycolysis by modulation of glucose transporter 1 in breast cancer cells[J]. Mol Cell Probes, 2020, 54: 101 667.
[21]
Qi C, Qin X, Zhou Z, et al. Circ_0072995 promotes cell carcinogenesis via up-regulating miR-149-5p-mediated SHMT2 in breast cancer[J]. Cancer Manag Res, 2020, 12: 11 169-11 181.
[22]
Apelt J, Mehlhorn G, Schliebs R. Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain[J]. J Neurosci Res, 1999, 57(5): 693-705.
[23]
Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth[J]. Cell Rep, 2014, 8(5): 1461-74.
[24]
Xiao M, Lou C, Xiao H, et al. MiR-128 regulation of glucose metabolism and cell proliferation in triple-negative breast cancer[J]. Br J Surg, 2018, 105(1): 75-85.
[25]
Zhao Y, Zhong R, Deng C, et al. Circle RNA circABCB10 modulates PFN2 to promote breast cancer progression, as well as aggravate radioresistance through facilitating glycolytic metabolism via miR-223-3p[J]. Cancer Biother Radiopharm, 2021, 36(6): 477-490.
[26]
Ahmad A, Aboukameel A, Kong D, et al. Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells[J]. Cancer Res, 2011, 71(9): 3400-3409.
[27]
Zhang Z, Deng X, Liu Y, et al. PKM2, function and expression and regulation[J]. Cell Biosci, 2019, 9: 52.
[28]
Chen C, Bai L, Cao F, et al. Targeting LIN28B reprograms tumor glucose metabolism and acidic microenvironment to suppress cancer stemness and metastasis[J]. Oncogene, 2019, 38(23): 4527-4539.
[29]
Wen YY, Liu WT, Sun HR, et al. IGF-1-mediated PKM2/β-catenin/miR-152 regulatory circuit in breast cancer[J]. Sci Rep, 2017, 7(1): 15897.
[30]
Wu H, Li Z, Wang Y, et al. MiR-106b-mediated Mfn2 suppression is critical for PKM2 induced mitochondrial fusion[J]. Am J Cancer Res, 2016, 6(10): 2221-2234.
[31]
Alamoudi AA, Alnoury A, Gad H. miRNA in tumour metabolism and why could it be the preferred pathway for energy reprograming[J]. Brief Funct Genomics, 2018, 17(3): 157-169.
[32]
Xing Z, Wang R, Wang X, et al. CircRNA circ-PDCD11 promotes triple-negative breast cancer progression via enhancing aerobic glycolysis[J]. Cell Death Discov, 2021, 7(1): 218.
[33]
Huang X, Xie X, Wang H, et al. PDL1 And LDHA act as ceRNAs in triple negative breast cancer by regulating miR-34a[J]. J Exp Clin Cancer Res, 2017, 36(1): 129.
[34]
Pinweha P, Phillips CA, Gregory PA, et al. MicroRNA-143-3p targets pyruvate carboxylase expression and controls proliferation and migration of MDA-MB-231 cells[J]. Arch Biochem Biophys, 2019, 677: 108 169.
[35]
Eichner LJ, Perry MC, Dufour CR, et al. miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway[J]. Cell Metab, 2010, 12(4): 352-361.
[36]
Zhang N, Zhang H, Liu Y, et al. SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2[J]. Cell Death Differ, 2019, 26(5): 843-859.
[37]
Turco C, Donzelli S, Fontemaggi G. miR-15/107 microRNA gene group: characteristics and functional implications in cancer[J]. Front Cell Dev Biol, 2020, 8: 427.
[38]
Wang J, Zhang X, Shi J, et al. Fatty acid synthase is a primary target of MiR-15a and MiR-16-1 in breast cancer[J]. Oncotarget, 2016, 7(48): 78 566-78 576.
[39]
Ahonen MA, Asghar MY, Parviainen SJ, et al. Human adipocyte differentiation and composition of disease-relevant lipids are regulated by miR-221-3p[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(1): 158 841.
[40]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[41]
Li Z, Chen L, Chen C, et al. Targeting ferroptosis in breast cancer[J]. Biomark Res, 2020, 8(1): 58.
[42]
Bazhabayi M, Qiu X, Li X, et al. CircGFRA1 facilitates the malignant progression of HER-2-positive breast cancer via acting as a sponge of miR-1228 and enhancing AIFM2 expression[J]. J Cell Mol Med, 2021, 25(21): 10 248-10 256.
[43]
Zhang H, Ge Z, Wang Z, et al. Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer[J]. Aging (Albany NY), 2021, 13(6): 8115-8126.
[44]
Yu T, Wang Y, Fan Y, et al. CircRNAs in cancer metabolism: a review[J]. J Hematol Oncol, 2019, 12(1): 90.
[45]
Yan W, Wu X, Zhou W, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells[J]. Nat Cell Biol, 2018, 20(5): 597-609.
[1] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[5] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[6] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[7] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[8] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[9] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[10] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[11] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 王磊, 李梦, 孙文利, 刘瑞, 王红春, 卢光泽, 赵颖, 郭进艳, 刘红星. 液相色谱质谱法对急性白血病患者血浆代谢组学的特征分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 850-857.
[14] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[15] 周加军, 余永武, 周涵, 刘勇, 张凌. 甲状旁腺切除对继发性甲状旁腺功能亢进患者骨密度及骨代谢的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 706-710.
阅读次数
全文


摘要