[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
[2] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
|
[3] |
Warburg O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314.
|
[4] |
Du Y, Wei N, Ma R, et al. A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer[J]. Cell Death Dis, 2020, 11(9): 731.
|
[5] |
Guda MR, Asuthkar S, Labak CM, et al. Targeting PDK4 inhibits breast cancer metabolism[J]. Am J Cancer Res, 2018, 8(9): 1725-1738.
|
[6] |
Ren S, Liu J, Feng Y, et al. Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia[J]. J Exp Clin Cancer Res, 2019, 38(1): 388.
|
[7] |
Singh R, Yadav V, Kumar S, et al. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1[J]. Sci Rep, 2015, 5: 17 454.
|
[8] |
Lao-On U, Attwood PV, Jitrapakdee S. Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection[J]. J Mol Med (Berl), 2018, 96(3-4): 237-247.
|
[9] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
|
[10] |
Eastlack SC, Dong S, Ivan C, et al. Suppression of PDHX by microRNA-27b deregulates cell metabolism and promotes growth in breast cancer[J]. Mol Cancer, 2018, 17(1): 100.
|
[11] |
Chen B, Tang H, Liu X, et al. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer[J]. Cancer Lett, 2015, 356(2 Pt B): 410-417.
|
[12] |
Li L, Kang L, Zhao W, et al. miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect[J]. Cancer Lett, 2017, 400: 89-98.
|
[13] |
Jiang S, Zhang LF, Zhang HW, et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells[J]. EMBO J, 2012, 31(8): 1985-98.
|
[14] |
Ma F, Zhang L, Ma L, et al. MiR-361-5p inhibits glycolytic metabolism, proliferation and invasion of breast cancer by targeting FGFR1 and MMP-1[J]. J Exp Clin Cancer Res, 2017, 36(1): 158.
|
[15] |
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation[J]. Annu Rev Cell Dev Biol, 2011, 27: 441-464.
|
[16] |
Stringer DM, Zahradka P, Taylor CG. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes[J]. Nutr Rev, 2015, 73(3): 140-154.
|
[17] |
Kim S, Lee E, Jung J, et al. microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer[J]. Oncogene, 2018, 37(22): 2982-2991.
|
[18] |
Shi Y, Zhang Y, Ran F, et al. Let-7a-5p inhibits triple-negative breast tumor growth and metastasis through GLUT12-mediated warburg effect[J]. Cancer Lett, 2020, 495: 53-65.
|
[19] |
He Y, Deng F, Zhao S, et al. Analysis of miRNA-mRNA network reveals miR-140-5p as a suppressor of breast cancer glycolysis via targeting GLUT1[J]. Epigenomics, 2019, 11(9): 1021-1036.
|
[20] |
Li Y, Li H, Wang W, et al. LINC00346 regulates glycolysis by modulation of glucose transporter 1 in breast cancer cells[J]. Mol Cell Probes, 2020, 54: 101 667.
|
[21] |
Qi C, Qin X, Zhou Z, et al. Circ_0072995 promotes cell carcinogenesis via up-regulating miR-149-5p-mediated SHMT2 in breast cancer[J]. Cancer Manag Res, 2020, 12: 11 169-11 181.
|
[22] |
Apelt J, Mehlhorn G, Schliebs R. Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain[J]. J Neurosci Res, 1999, 57(5): 693-705.
|
[23] |
Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth[J]. Cell Rep, 2014, 8(5): 1461-74.
|
[24] |
Xiao M, Lou C, Xiao H, et al. MiR-128 regulation of glucose metabolism and cell proliferation in triple-negative breast cancer[J]. Br J Surg, 2018, 105(1): 75-85.
|
[25] |
Zhao Y, Zhong R, Deng C, et al. Circle RNA circABCB10 modulates PFN2 to promote breast cancer progression, as well as aggravate radioresistance through facilitating glycolytic metabolism via miR-223-3p[J]. Cancer Biother Radiopharm, 2021, 36(6): 477-490.
|
[26] |
Ahmad A, Aboukameel A, Kong D, et al. Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells[J]. Cancer Res, 2011, 71(9): 3400-3409.
|
[27] |
Zhang Z, Deng X, Liu Y, et al. PKM2, function and expression and regulation[J]. Cell Biosci, 2019, 9: 52.
|
[28] |
Chen C, Bai L, Cao F, et al. Targeting LIN28B reprograms tumor glucose metabolism and acidic microenvironment to suppress cancer stemness and metastasis[J]. Oncogene, 2019, 38(23): 4527-4539.
|
[29] |
Wen YY, Liu WT, Sun HR, et al. IGF-1-mediated PKM2/β-catenin/miR-152 regulatory circuit in breast cancer[J]. Sci Rep, 2017, 7(1): 15897.
|
[30] |
Wu H, Li Z, Wang Y, et al. MiR-106b-mediated Mfn2 suppression is critical for PKM2 induced mitochondrial fusion[J]. Am J Cancer Res, 2016, 6(10): 2221-2234.
|
[31] |
Alamoudi AA, Alnoury A, Gad H. miRNA in tumour metabolism and why could it be the preferred pathway for energy reprograming[J]. Brief Funct Genomics, 2018, 17(3): 157-169.
|
[32] |
Xing Z, Wang R, Wang X, et al. CircRNA circ-PDCD11 promotes triple-negative breast cancer progression via enhancing aerobic glycolysis[J]. Cell Death Discov, 2021, 7(1): 218.
|
[33] |
Huang X, Xie X, Wang H, et al. PDL1 And LDHA act as ceRNAs in triple negative breast cancer by regulating miR-34a[J]. J Exp Clin Cancer Res, 2017, 36(1): 129.
|
[34] |
Pinweha P, Phillips CA, Gregory PA, et al. MicroRNA-143-3p targets pyruvate carboxylase expression and controls proliferation and migration of MDA-MB-231 cells[J]. Arch Biochem Biophys, 2019, 677: 108 169.
|
[35] |
Eichner LJ, Perry MC, Dufour CR, et al. miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway[J]. Cell Metab, 2010, 12(4): 352-361.
|
[36] |
Zhang N, Zhang H, Liu Y, et al. SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2[J]. Cell Death Differ, 2019, 26(5): 843-859.
|
[37] |
Turco C, Donzelli S, Fontemaggi G. miR-15/107 microRNA gene group: characteristics and functional implications in cancer[J]. Front Cell Dev Biol, 2020, 8: 427.
|
[38] |
Wang J, Zhang X, Shi J, et al. Fatty acid synthase is a primary target of MiR-15a and MiR-16-1 in breast cancer[J]. Oncotarget, 2016, 7(48): 78 566-78 576.
|
[39] |
Ahonen MA, Asghar MY, Parviainen SJ, et al. Human adipocyte differentiation and composition of disease-relevant lipids are regulated by miR-221-3p[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(1): 158 841.
|
[40] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
|
[41] |
Li Z, Chen L, Chen C, et al. Targeting ferroptosis in breast cancer[J]. Biomark Res, 2020, 8(1): 58.
|
[42] |
Bazhabayi M, Qiu X, Li X, et al. CircGFRA1 facilitates the malignant progression of HER-2-positive breast cancer via acting as a sponge of miR-1228 and enhancing AIFM2 expression[J]. J Cell Mol Med, 2021, 25(21): 10 248-10 256.
|
[43] |
Zhang H, Ge Z, Wang Z, et al. Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer[J]. Aging (Albany NY), 2021, 13(6): 8115-8126.
|
[44] |
Yu T, Wang Y, Fan Y, et al. CircRNAs in cancer metabolism: a review[J]. J Hematol Oncol, 2019, 12(1): 90.
|
[45] |
Yan W, Wu X, Zhou W, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells[J]. Nat Cell Biol, 2018, 20(5): 597-609.
|