[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249.
|
[2] |
Belli C, Trapani D, Viale G, et al. Targeting the microenvironment in solid tumors[J]. Cancer Treat Rev, 2018, 65: 22-32.
|
[3] |
Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989,8(2):98-101.
|
[4] |
樊廷俊,田梦,赵君. 细胞外基质对细胞行为调控作用的研究进展[J]. 生命科学,2021, 33 (7): 844-852.
|
[5] |
Hynes RO. The extracellular matrix: not just pretty fibrils[J]. Science, 2009, 326 (5957): 1216-1219.
|
[6] |
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease[J]. Nat Rev Mol Cell Biol, 2014, 15 (12): 786-801.
|
[7] |
Miles FL, Sikes RA. Insidious changes in stromal matrix fuel cancer progression[J]. Mol Cancer Res, 2014, 12 (3): 297-312.
|
[8] |
Sorushanova A, Delgado LM, Wu Z, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development[J].Adv Mater, 2019, 31 (1): e1801651.
|
[9] |
Ricard-Blum S. The collagen family[J]. Cold Spring Harb Perspect Biol, 2011, 3 (1): a004978.
|
[10] |
Boot-Handford RP, Tuckwell DS. Fibrillar collagen: the key to vertebrate evolution? A tale of molecular incest[J]. Bioessays, 2003, 25 (2): 142-151.
|
[11] |
Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis[J]. Nat Rev Cancer, 2003, 3 (6): 422-433.
|
[12] |
周炜建,刘超英. X型胶原蛋白在恶性肿瘤中的研究进展[J]. 现代肿瘤医学,2020, 28 (16): 2898-2901.
|
[13] |
Fang M, Yuan J, Peng C, et al. Collagen as a double-edged sword in tumor progression[J]. Tumour Biol, 2014, 35 (4): 2871-2882.
|
[14] |
Kauppila S, Stenbäck F, Risteli J, et al. Aberrant type I and type Ⅲ collagen gene expression in human breast cancer in vivo[J]. J Pathol, 1998, 186 (3): 262-268.
|
[15] |
Walker RA. The complexities of breast cancer desmoplasia[J]. Breast Cancer Res, 2001, 3 (3): 143-145.
|
[16] |
Guerrero J, Tobar N, Cáceres M, et al. Soluble factors derived from tumor mammary cell lines induce a stromal mammary adipose reversion in human and mice adipose cells. Possible role of TGF-beta1 and TNF-alpha[J]. Breast Cancer Res Treat, 2010, 119 (2): 497-508.
|
[17] |
Mccormack VA, Dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis[J]. Cancer Epidemiol Biomarkers Prev, 2006, 15 (6): 1159-1169.
|
[18] |
Declerck YA. Desmoplasia: a response or a niche?[J]. Cancer Discov, 2012, 2 (9): 772-774.
|
[19] |
Martinez J, Smith PC. The dynamic interaction between extracellular matrix remodeling and breast tumor progression[J]. Cells, 2021, 10 (5):1046.
|
[20] |
Wang Y, Lu S, Xiong J, et al. ColXα1 is a stromal component that colocalizes with elastin in the breast tumor extracellular matrix[J]. J Pathol Clin Res, 2019, 5 (1): 40-52.
|
[21] |
Schultz S, Bartsch H, Sotlar K, et al. Progression-specific genes identified in microdissected formalin-fixed and paraffin-embedded tissue containing matched ductal carcinoma in situ and invasive ductal breast cancers[J]. BMC Med Genomics, 2018, 11 (1): 80.
|
[22] |
Oskarsson T. Extracellular matrix components in breast cancer progression and metastasis[J]. Breast, 2013, 22 Suppl 2: S66-S72.
|
[23] |
Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution[J]. Curr Opin Cell Biol, 2010, 22 (5): 697-706.
|
[24] |
Provenzano PP, Eliceiri KW, Campbell JM, et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion[J]. BMC Med, 2006, 4 (1): 38.
|
[25] |
Provenzano PP, Inman DR, Eliceiri KW, et al. Collagen density promotes mammary tumor initiation and progression[J]. BMC Med, 2008, 6: 11.
|
[26] |
Johns PC, Yaffe MJ. X-ray characterisation of normal and neoplastic breast tissues[J]. Phys Med Biol, 1987, 32 (6): 675-695.
|
[27] |
Song T, Kuang S. Adipocyte dedifferentiation in health and diseases[J]. Clin Sci (Lond), 2019, 133 (20): 2107-2119.
|
[28] |
Li T, Sun L, Miller N, et al. The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer[J].Cancer Epidemiol Biomarkers Prev, 2005, 14 (2): 343-349.
|
[29] |
DeSantis CE, Ma J, Goding Sauer A, et al. Breast cancer statistics, 2017, racial disparity in mortality by state[J]. CA Cancer J Clin, 2017, 67 (6): 439-448.
|
[30] |
Boyd NF, Martin LJ, Yaffe MJ, et al. Mammographic density and breast cancer risk: current understanding and future prospects[J]. Breast Cancer Res, 2011, 13 (6): 223.
|
[31] |
Tossas-Milligan K, Shalabi S, Jones V, et al. Mammographic density: intersection of advocacy, science, and clinical practice[J]. Curr Breast Cancer Rep, 2019, 11 (3): 100-110.
|
[32] |
Campagnola PJ, Loew LM. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms[J]. Nat Biotechnol, 2003, 21 (11): 1356-1360.
|
[33] |
Brown E, Mckee T, Ditomaso E, et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation[J]. Nat Med, 2003, 9 (6): 796-800.
|
[34] |
曾琦,刘瑞,王楠,等. 拉曼光谱技术在医学检验领域中的研究进展 [J]. 光子学报,2021, 50 (10): 300-311.
|
[35] |
Haka AS, Shafer-Peltier KE, Fitzmaurice M, et al. Diagnosing breast cancer by using Raman spectroscopy[J].Proc Natl Acad Sci U S A, 2005, 102 (35): 12 371-12 376.
|
[36] |
Brozek-Pluska B, Musial J, Kordek R, et al. Raman spectroscopy and imaging: applications in human breast cancer diagnosis[J]. Analyst, 2012, 137 (16): 3773-3780.
|
[37] |
Zúñiga WC, Jones V, Anderson SM, et al. Raman spectroscopy for rapid evaluation of surgical margins during breast cancer lumpectomy[J]. Sci Rep, 2019, 9 (1): 14 639.
|
[38] |
Giussani M, Landoni E, Merlino G, et al. Extracellular matrix proteins as diagnostic markers of breast carcinoma[J]. J Cell Physiol, 2018, 233 (8): 6280-6290.
|
[39] |
Hagedorn EJ, Sherwood DR. Cell invasion through basement membrane: the anchor cell breaches the barrier[J]. Curr Opin Cell Biol, 2011, 23 (5): 589-596.
|
[40] |
孙曼曼. 胶原仿生模型的构建及其在乳腺癌体外研究中的应用[D].广州:暨南大学,2020.
|
[41] |
周晋,陈奕,丁健. 基底膜和肿瘤转移[J]. 生理科学进展,2006, 37(4): 307-312.
|
[42] |
Christofori G. New signals from the invasive front[J]. Nature, 2006, 441 (7092): 444-450.
|
[43] |
Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited[J]. J Cell Biol, 2009, 185 (1): 11-19.
|
[44] |
Gonzalez-Avila G, Sommer B, García-Hernández AA, et al. Matrix metalloproteinases’ role in tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1245:97-131.
|
[45] |
Thompson EW, Yu M, Bueno J, et al. Collagen induced MMP-2 activation in human breast cancer[J]. Breast Cancer Res Treat, 1994, 31 (2-3): 357-370.
|
[46] |
Walker C, Mojares E, Del Río Hernández A. Role of extracellular matrix in development and cancer progression[J]. Int J Mol Sci, 2018, 19 (10):3028.
|
[47] |
Condeelis J, Segall JE. Intravital imaging of cell movement in tumours[J]. Nat Rev Cancer, 2003, 3 (12): 921-930.
|
[48] |
Wyckoff JB, Wang Y, Lin EY, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors[J]. Cancer Res, 2007, 67 (6): 2649-2656.
|
[49] |
Riching KM, Cox BL, Salick MR, et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence[J]. Biophys J, 2014, 107 (11): 2546-2558.
|
[50] |
Provenzano PP, Inman DR, Eliceiri KW, et al. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization[J]. Biophys J, 2008, 95 (11): 5374-5384.
|
[51] |
Ray A, Lee O, Win Z, et al. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration[J]. Nat Commun, 2017, 8: 14 923.
|
[52] |
Li X, Wang J. Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis[J].Int J Biol Sci, 2020, 16 (12): 2014-2028.
|
[53] |
Stylianopoulos T, Martin JD, Chauhan VP, et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors[J]. Proc Natl Acad Sci U S A, 2012, 109 (38): 15 101-15 108.
|
[54] |
Cheng G, Tse J, Jain RK, et al. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells[J]. PLoS One, 2009, 4 (2): e4632.
|
[55] |
Kakkad SM, Penet MF, Akhbardeh A, et al. Hypoxic tumor environments exhibit disrupted collagen I fibers and low macromolecular transport[J]. PLoS One, 2013, 8 (12): e81869.
|
[56] |
Northcott JM, Dean IS, Mouw JK, et al. Feeling stress: the mechanics of cancer progression and aggression[J]. Front Cell Dev Biol, 2018, 6:17.
|
[57] |
Spencer A, Sligar AD, Chavarria D, et al. Biomechanical regulation of breast cancer metastasis and progression[J]. Sci Rep, 2021, 11 (1): 9838.
|
[58] |
Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling[J]. Cell, 2009, 139 (5): 891-906.
|
[59] |
Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression[J]. J Clin Invest, 2012, 122 (11): 4243-4256.
|
[60] |
Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease[J]. Nat Rev Cancer, 2009, 9 (9): 665-674.
|
[61] |
Huang Y, Wang Y, Tang J, et al. CAM-DR:mechanisms, roles and clinical application in tumors[J]. Front Cell Dev Biol, 2021, 9: 698 047.
|
[62] |
Baltes F, Pfeifer V, Silbermann K, et al. β-integrin binding to collagen type 1 transmits breast cancer cells into chemoresistance by activating ABC efflux transporters[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867 (5): 118 663.
|
[63] |
Hanker AB, Estrada MV, Bianchini G, et al. Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER2 and PI3K in HER2 breast cancer[J]. Cancer Res, 2017, 77(12): 3280-3292.
|
[64] |
Heldin C-H, Rubin K, Pietras K, et al. High interstitial fluid pressure-an obstacle in cancer therapy[J]. Nat Rev Cancer, 2004, 4(10): 806-813.
|
[65] |
Netti PA, Berk DA, Swartz MA, et al. Role of extracellular matrix assembly in interstitial transport in solid tumors[J]. Cancer Res, 2000, 60 (9): 2497-2503.
|
[66] |
Minchinton AI, Tannock IF. Drug penetration in solid tumours[J]. Nat Rev Cancer, 2006, 6 (8): 583-592.
|
[67] |
Zhao CL, Singh K, Brodsky AS, et al. Stromal ColXα1 expression correlates with tumor-infiltrating lymphocytes and predicts adjuvant therapy outcome in ER-positive/HER2-positive breast cancer[J]. BMC Cancer, 2019, 19 (1): 1036.
|
[68] |
Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer[J]. J Clin Oncol, 2010, 28 (1): 105-113.
|
[69] |
Brodsky AS, Xiong J, Yang D, et al. Identification of stromal ColXalpha1 and tumor-infiltrating lymphocytes as putative predictive markers of neoadjuvant therapy in estrogen receptor-positive/HER2-positive breast cancer[J]. BMC Cancer, 2016, 16: 274.
|
[70] |
Paidi SK, Diaz PM, Dadgar S, et al. Label-free Raman spectroscopy reveals signatures of radiation resistance in the tumor microenvironment[J]. Cancer Res, 2019, 79 (8): 2054-2064.
|
[71] |
Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside[J]. J Transl Med, 2019, 17 (1): 309.
|