切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 29 -33. doi: 10.3877/cma.j.issn.1674-0807.2022.01.005

综述

胶原蛋白在乳腺癌诊疗中的研究进展
周鹏1, 周文重2, 李亮2, 黄淑亚2, 郑超2, 余之刚2,()   
  1. 1. 250033 济南,山东大学第二医院乳腺外科
    2. 250033 济南,山东大学第二医院乳腺外科;250033 济南,山东大学乳腺疾病防治转化工程研究所
  • 收稿日期:2021-12-06 出版日期:2022-02-01
  • 通信作者: 余之刚
  • 基金资助:
    国家自然科学基金资助项目(82072914); 国家重点研发计划项目(2016YFC0901304)

Collagen for diagnosis and treatment of breast cancer

Peng Zhou1, Wenzhong Zhou2, Liang Li2   

  • Received:2021-12-06 Published:2022-02-01
引用本文:

周鹏, 周文重, 李亮, 黄淑亚, 郑超, 余之刚. 胶原蛋白在乳腺癌诊疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2022, 16(01): 29-33.

Peng Zhou, Wenzhong Zhou, Liang Li. Collagen for diagnosis and treatment of breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(01): 29-33.

肿瘤微环境与肿瘤细胞的生存、发展密切相关。其中,胶原蛋白是细胞外基质中含量最丰富的蛋白成分,在肿瘤发生、发展中的重要作用也逐渐受到关注。胶原蛋白表达的变化伴随乳腺癌发生、发展的全过程。笔者将从胶原蛋白在乳腺癌中的表达、在诊断中的价值、对乳腺癌进展和治疗的影响等方面进行总结,为进一步针对胶原蛋白的乳腺癌防治研究提供依据。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 202171(3):209-249.
[2]
Belli C, Trapani D, Viale G, et al. Targeting the microenvironment in solid tumors[J]. Cancer Treat Rev, 2018, 65: 22-32.
[3]
Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 19898(2):98-101.
[4]
樊廷俊,田梦,赵君. 细胞外基质对细胞行为调控作用的研究进展[J]. 生命科学2021, 33 (7): 844-852.
[5]
Hynes RO. The extracellular matrix: not just pretty fibrils[J]. Science, 2009, 326 (5957): 1216-1219.
[6]
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease[J]. Nat Rev Mol Cell Biol, 2014, 15 (12): 786-801.
[7]
Miles FL, Sikes RA. Insidious changes in stromal matrix fuel cancer progression[J]. Mol Cancer Res, 2014, 12 (3): 297-312.
[8]
Sorushanova A, Delgado LM, Wu Z, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development[J].Adv Mater, 2019, 31 (1): e1801651.
[9]
Ricard-Blum S. The collagen family[J]. Cold Spring Harb Perspect Biol, 2011, 3 (1): a004978.
[10]
Boot-Handford RP, Tuckwell DS. Fibrillar collagen: the key to vertebrate evolution? A tale of molecular incest[J]. Bioessays, 2003, 25 (2): 142-151.
[11]
Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis[J]. Nat Rev Cancer, 2003, 3 (6): 422-433.
[12]
周炜建,刘超英. X型胶原蛋白在恶性肿瘤中的研究进展[J]. 现代肿瘤医学2020, 28 (16): 2898-2901.
[13]
Fang M, Yuan J, Peng C, et al. Collagen as a double-edged sword in tumor progression[J]. Tumour Biol, 2014, 35 (4): 2871-2882.
[14]
Kauppila S, Stenbäck F, Risteli J, et al. Aberrant type I and type Ⅲ collagen gene expression in human breast cancer in vivo[J]. J Pathol, 1998, 186 (3): 262-268.
[15]
Walker RA. The complexities of breast cancer desmoplasia[J]. Breast Cancer Res, 2001, 3 (3): 143-145.
[16]
Guerrero J, Tobar N, Cáceres M, et al. Soluble factors derived from tumor mammary cell lines induce a stromal mammary adipose reversion in human and mice adipose cells. Possible role of TGF-beta1 and TNF-alpha[J]. Breast Cancer Res Treat, 2010, 119 (2): 497-508.
[17]
Mccormack VA, Dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis[J]. Cancer Epidemiol Biomarkers Prev, 2006, 15 (6): 1159-1169.
[18]
Declerck YA. Desmoplasia: a response or a niche?[J]. Cancer Discov, 2012, 2 (9): 772-774.
[19]
Martinez J, Smith PC. The dynamic interaction between extracellular matrix remodeling and breast tumor progression[J]. Cells, 2021, 10 (5):1046.
[20]
Wang Y, Lu S, Xiong J, et al. ColXα1 is a stromal component that colocalizes with elastin in the breast tumor extracellular matrix[J]. J Pathol Clin Res, 2019, 5 (1): 40-52.
[21]
Schultz S, Bartsch H, Sotlar K, et al. Progression-specific genes identified in microdissected formalin-fixed and paraffin-embedded tissue containing matched ductal carcinoma in situ and invasive ductal breast cancers[J]. BMC Med Genomics, 2018, 11 (1): 80.
[22]
Oskarsson T. Extracellular matrix components in breast cancer progression and metastasis[J]. Breast, 2013, 22 Suppl 2: S66-S72.
[23]
Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution[J]. Curr Opin Cell Biol, 2010, 22 (5): 697-706.
[24]
Provenzano PP, Eliceiri KW, Campbell JM, et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion[J]. BMC Med, 2006, 4 (1): 38.
[25]
Provenzano PP, Inman DR, Eliceiri KW, et al. Collagen density promotes mammary tumor initiation and progression[J]. BMC Med, 2008, 6: 11.
[26]
Johns PC, Yaffe MJ. X-ray characterisation of normal and neoplastic breast tissues[J]. Phys Med Biol, 1987, 32 (6): 675-695.
[27]
Song T, Kuang S. Adipocyte dedifferentiation in health and diseases[J]. Clin Sci (Lond), 2019, 133 (20): 2107-2119.
[28]
Li T, Sun L, Miller N, et al. The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer[J].Cancer Epidemiol Biomarkers Prev, 2005, 14 (2): 343-349.
[29]
DeSantis CE, Ma J, Goding Sauer A, et al. Breast cancer statistics, 2017, racial disparity in mortality by state[J]. CA Cancer J Clin, 2017, 67 (6): 439-448.
[30]
Boyd NF, Martin LJ, Yaffe MJ, et al. Mammographic density and breast cancer risk: current understanding and future prospects[J]. Breast Cancer Res, 2011, 13 (6): 223.
[31]
Tossas-Milligan K, Shalabi S, Jones V, et al. Mammographic density: intersection of advocacy, science, and clinical practice[J]. Curr Breast Cancer Rep, 2019, 11 (3): 100-110.
[32]
Campagnola PJ, Loew LM. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms[J]. Nat Biotechnol, 2003, 21 (11): 1356-1360.
[33]
Brown E, Mckee T, Ditomaso E, et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation[J]. Nat Med, 2003, 9 (6): 796-800.
[34]
曾琦,刘瑞,王楠,等. 拉曼光谱技术在医学检验领域中的研究进展 [J]. 光子学报2021, 50 (10): 300-311.
[35]
Haka AS, Shafer-Peltier KE, Fitzmaurice M, et al. Diagnosing breast cancer by using Raman spectroscopy[J].Proc Natl Acad Sci U S A, 2005, 102 (35): 12 371-12 376.
[36]
Brozek-Pluska B, Musial J, Kordek R, et al. Raman spectroscopy and imaging: applications in human breast cancer diagnosis[J]. Analyst, 2012, 137 (16): 3773-3780.
[37]
Zúñiga WC, Jones V, Anderson SM, et al. Raman spectroscopy for rapid evaluation of surgical margins during breast cancer lumpectomy[J]. Sci Rep, 2019, 9 (1): 14 639.
[38]
Giussani M, Landoni E, Merlino G, et al. Extracellular matrix proteins as diagnostic markers of breast carcinoma[J]. J Cell Physiol, 2018, 233 (8): 6280-6290.
[39]
Hagedorn EJ, Sherwood DR. Cell invasion through basement membrane: the anchor cell breaches the barrier[J]. Curr Opin Cell Biol, 2011, 23 (5): 589-596.
[40]
孙曼曼. 胶原仿生模型的构建及其在乳腺癌体外研究中的应用[D].广州:暨南大学,2020.
[41]
周晋,陈奕,丁健. 基底膜和肿瘤转移[J]. 生理科学进展2006, 37(4): 307-312.
[42]
Christofori G. New signals from the invasive front[J]. Nature, 2006, 441 (7092): 444-450.
[43]
Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited[J]. J Cell Biol, 2009, 185 (1): 11-19.
[44]
Gonzalez-Avila G, Sommer B, García-Hernández AA, et al. Matrix metalloproteinases’ role in tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1245:97-131.
[45]
Thompson EW, Yu M, Bueno J, et al. Collagen induced MMP-2 activation in human breast cancer[J]. Breast Cancer Res Treat, 1994, 31 (2-3): 357-370.
[46]
Walker C, Mojares E, Del Río Hernández A. Role of extracellular matrix in development and cancer progression[J]. Int J Mol Sci, 2018, 19 (10):3028.
[47]
Condeelis J, Segall JE. Intravital imaging of cell movement in tumours[J]. Nat Rev Cancer, 2003, 3 (12): 921-930.
[48]
Wyckoff JB, Wang Y, Lin EY, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors[J]. Cancer Res, 2007, 67 (6): 2649-2656.
[49]
Riching KM, Cox BL, Salick MR, et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence[J]. Biophys J, 2014, 107 (11): 2546-2558.
[50]
Provenzano PP, Inman DR, Eliceiri KW, et al. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization[J]. Biophys J, 2008, 95 (11): 5374-5384.
[51]
Ray A, Lee O, Win Z, et al. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration[J]. Nat Commun, 2017, 8: 14 923.
[52]
Li X, Wang J. Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis[J].Int J Biol Sci, 2020, 16 (12): 2014-2028.
[53]
Stylianopoulos T, Martin JD, Chauhan VP, et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors[J]. Proc Natl Acad Sci U S A, 2012, 109 (38): 15 101-15 108.
[54]
Cheng G, Tse J, Jain RK, et al. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells[J]. PLoS One, 2009, 4 (2): e4632.
[55]
Kakkad SM, Penet MF, Akhbardeh A, et al. Hypoxic tumor environments exhibit disrupted collagen I fibers and low macromolecular transport[J]. PLoS One, 2013, 8 (12): e81869.
[56]
Northcott JM, Dean IS, Mouw JK, et al. Feeling stress: the mechanics of cancer progression and aggression[J]. Front Cell Dev Biol, 2018, 6:17.
[57]
Spencer A, Sligar AD, Chavarria D, et al. Biomechanical regulation of breast cancer metastasis and progression[J]. Sci Rep, 2021, 11 (1): 9838.
[58]
Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling[J]. Cell, 2009, 139 (5): 891-906.
[59]
Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression[J]. J Clin Invest, 2012, 122 (11): 4243-4256.
[60]
Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease[J]. Nat Rev Cancer, 2009, 9 (9): 665-674.
[61]
Huang Y, Wang Y, Tang J, et al. CAM-DR:mechanisms, roles and clinical application in tumors[J]. Front Cell Dev Biol, 2021, 9: 698 047.
[62]
Baltes F, Pfeifer V, Silbermann K, et al. β-integrin binding to collagen type 1 transmits breast cancer cells into chemoresistance by activating ABC efflux transporters[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867 (5): 118 663.
[63]
Hanker AB, Estrada MV, Bianchini G, et al. Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER2 and PI3K in HER2 breast cancer[J]. Cancer Res, 2017, 77(12): 3280-3292.
[64]
Heldin C-H, Rubin K, Pietras K, et al. High interstitial fluid pressure-an obstacle in cancer therapy[J]. Nat Rev Cancer, 2004, 4(10): 806-813.
[65]
Netti PA, Berk DA, Swartz MA, et al. Role of extracellular matrix assembly in interstitial transport in solid tumors[J]. Cancer Res, 2000, 60 (9): 2497-2503.
[66]
Minchinton AI, Tannock IF. Drug penetration in solid tumours[J]. Nat Rev Cancer, 2006, 6 (8): 583-592.
[67]
Zhao CL, Singh K, Brodsky AS, et al. Stromal ColXα1 expression correlates with tumor-infiltrating lymphocytes and predicts adjuvant therapy outcome in ER-positive/HER2-positive breast cancer[J]. BMC Cancer, 2019, 19 (1): 1036.
[68]
Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer[J]. J Clin Oncol, 2010, 28 (1): 105-113.
[69]
Brodsky AS, Xiong J, Yang D, et al. Identification of stromal ColXalpha1 and tumor-infiltrating lymphocytes as putative predictive markers of neoadjuvant therapy in estrogen receptor-positive/HER2-positive breast cancer[J]. BMC Cancer, 2016, 16: 274.
[70]
Paidi SK, Diaz PM, Dadgar S, et al. Label-free Raman spectroscopy reveals signatures of radiation resistance in the tumor microenvironment[J]. Cancer Res, 2019, 79 (8): 2054-2064.
[71]
Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside[J]. J Transl Med, 2019, 17 (1): 309.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[4] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[5] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[6] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[7] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[8] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[9] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[10] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[11] 孙欣欣, 刘军, 陈超伍, 孙超. 超声内镜引导细针穿刺抽吸术在胰腺占位性病变中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 418-421.
[12] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要