切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 29 -33. doi: 10.3877/cma.j.issn.1674-0807.2022.01.005

综述

胶原蛋白在乳腺癌诊疗中的研究进展
周鹏1, 周文重2, 李亮2, 黄淑亚2, 郑超2, 余之刚2,()   
  1. 1. 250033 济南,山东大学第二医院乳腺外科
    2. 250033 济南,山东大学第二医院乳腺外科;250033 济南,山东大学乳腺疾病防治转化工程研究所
  • 收稿日期:2021-12-06 出版日期:2022-02-01
  • 通信作者: 余之刚
  • 基金资助:
    国家自然科学基金资助项目(82072914); 国家重点研发计划项目(2016YFC0901304)

Collagen for diagnosis and treatment of breast cancer

Peng Zhou1, Wenzhong Zhou2, Liang Li2   

  • Received:2021-12-06 Published:2022-02-01
引用本文:

周鹏, 周文重, 李亮, 黄淑亚, 郑超, 余之刚. 胶原蛋白在乳腺癌诊疗中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2022, 16(01): 29-33.

Peng Zhou, Wenzhong Zhou, Liang Li. Collagen for diagnosis and treatment of breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(01): 29-33.

肿瘤微环境与肿瘤细胞的生存、发展密切相关。其中,胶原蛋白是细胞外基质中含量最丰富的蛋白成分,在肿瘤发生、发展中的重要作用也逐渐受到关注。胶原蛋白表达的变化伴随乳腺癌发生、发展的全过程。笔者将从胶原蛋白在乳腺癌中的表达、在诊断中的价值、对乳腺癌进展和治疗的影响等方面进行总结,为进一步针对胶原蛋白的乳腺癌防治研究提供依据。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 202171(3):209-249.
[2]
Belli C, Trapani D, Viale G, et al. Targeting the microenvironment in solid tumors[J]. Cancer Treat Rev, 2018, 65: 22-32.
[3]
Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 19898(2):98-101.
[4]
樊廷俊,田梦,赵君. 细胞外基质对细胞行为调控作用的研究进展[J]. 生命科学2021, 33 (7): 844-852.
[5]
Hynes RO. The extracellular matrix: not just pretty fibrils[J]. Science, 2009, 326 (5957): 1216-1219.
[6]
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease[J]. Nat Rev Mol Cell Biol, 2014, 15 (12): 786-801.
[7]
Miles FL, Sikes RA. Insidious changes in stromal matrix fuel cancer progression[J]. Mol Cancer Res, 2014, 12 (3): 297-312.
[8]
Sorushanova A, Delgado LM, Wu Z, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development[J].Adv Mater, 2019, 31 (1): e1801651.
[9]
Ricard-Blum S. The collagen family[J]. Cold Spring Harb Perspect Biol, 2011, 3 (1): a004978.
[10]
Boot-Handford RP, Tuckwell DS. Fibrillar collagen: the key to vertebrate evolution? A tale of molecular incest[J]. Bioessays, 2003, 25 (2): 142-151.
[11]
Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis[J]. Nat Rev Cancer, 2003, 3 (6): 422-433.
[12]
周炜建,刘超英. X型胶原蛋白在恶性肿瘤中的研究进展[J]. 现代肿瘤医学2020, 28 (16): 2898-2901.
[13]
Fang M, Yuan J, Peng C, et al. Collagen as a double-edged sword in tumor progression[J]. Tumour Biol, 2014, 35 (4): 2871-2882.
[14]
Kauppila S, Stenbäck F, Risteli J, et al. Aberrant type I and type Ⅲ collagen gene expression in human breast cancer in vivo[J]. J Pathol, 1998, 186 (3): 262-268.
[15]
Walker RA. The complexities of breast cancer desmoplasia[J]. Breast Cancer Res, 2001, 3 (3): 143-145.
[16]
Guerrero J, Tobar N, Cáceres M, et al. Soluble factors derived from tumor mammary cell lines induce a stromal mammary adipose reversion in human and mice adipose cells. Possible role of TGF-beta1 and TNF-alpha[J]. Breast Cancer Res Treat, 2010, 119 (2): 497-508.
[17]
Mccormack VA, Dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis[J]. Cancer Epidemiol Biomarkers Prev, 2006, 15 (6): 1159-1169.
[18]
Declerck YA. Desmoplasia: a response or a niche?[J]. Cancer Discov, 2012, 2 (9): 772-774.
[19]
Martinez J, Smith PC. The dynamic interaction between extracellular matrix remodeling and breast tumor progression[J]. Cells, 2021, 10 (5):1046.
[20]
Wang Y, Lu S, Xiong J, et al. ColXα1 is a stromal component that colocalizes with elastin in the breast tumor extracellular matrix[J]. J Pathol Clin Res, 2019, 5 (1): 40-52.
[21]
Schultz S, Bartsch H, Sotlar K, et al. Progression-specific genes identified in microdissected formalin-fixed and paraffin-embedded tissue containing matched ductal carcinoma in situ and invasive ductal breast cancers[J]. BMC Med Genomics, 2018, 11 (1): 80.
[22]
Oskarsson T. Extracellular matrix components in breast cancer progression and metastasis[J]. Breast, 2013, 22 Suppl 2: S66-S72.
[23]
Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution[J]. Curr Opin Cell Biol, 2010, 22 (5): 697-706.
[24]
Provenzano PP, Eliceiri KW, Campbell JM, et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion[J]. BMC Med, 2006, 4 (1): 38.
[25]
Provenzano PP, Inman DR, Eliceiri KW, et al. Collagen density promotes mammary tumor initiation and progression[J]. BMC Med, 2008, 6: 11.
[26]
Johns PC, Yaffe MJ. X-ray characterisation of normal and neoplastic breast tissues[J]. Phys Med Biol, 1987, 32 (6): 675-695.
[27]
Song T, Kuang S. Adipocyte dedifferentiation in health and diseases[J]. Clin Sci (Lond), 2019, 133 (20): 2107-2119.
[28]
Li T, Sun L, Miller N, et al. The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer[J].Cancer Epidemiol Biomarkers Prev, 2005, 14 (2): 343-349.
[29]
DeSantis CE, Ma J, Goding Sauer A, et al. Breast cancer statistics, 2017, racial disparity in mortality by state[J]. CA Cancer J Clin, 2017, 67 (6): 439-448.
[30]
Boyd NF, Martin LJ, Yaffe MJ, et al. Mammographic density and breast cancer risk: current understanding and future prospects[J]. Breast Cancer Res, 2011, 13 (6): 223.
[31]
Tossas-Milligan K, Shalabi S, Jones V, et al. Mammographic density: intersection of advocacy, science, and clinical practice[J]. Curr Breast Cancer Rep, 2019, 11 (3): 100-110.
[32]
Campagnola PJ, Loew LM. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms[J]. Nat Biotechnol, 2003, 21 (11): 1356-1360.
[33]
Brown E, Mckee T, Ditomaso E, et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation[J]. Nat Med, 2003, 9 (6): 796-800.
[34]
曾琦,刘瑞,王楠,等. 拉曼光谱技术在医学检验领域中的研究进展 [J]. 光子学报2021, 50 (10): 300-311.
[35]
Haka AS, Shafer-Peltier KE, Fitzmaurice M, et al. Diagnosing breast cancer by using Raman spectroscopy[J].Proc Natl Acad Sci U S A, 2005, 102 (35): 12 371-12 376.
[36]
Brozek-Pluska B, Musial J, Kordek R, et al. Raman spectroscopy and imaging: applications in human breast cancer diagnosis[J]. Analyst, 2012, 137 (16): 3773-3780.
[37]
Zúñiga WC, Jones V, Anderson SM, et al. Raman spectroscopy for rapid evaluation of surgical margins during breast cancer lumpectomy[J]. Sci Rep, 2019, 9 (1): 14 639.
[38]
Giussani M, Landoni E, Merlino G, et al. Extracellular matrix proteins as diagnostic markers of breast carcinoma[J]. J Cell Physiol, 2018, 233 (8): 6280-6290.
[39]
Hagedorn EJ, Sherwood DR. Cell invasion through basement membrane: the anchor cell breaches the barrier[J]. Curr Opin Cell Biol, 2011, 23 (5): 589-596.
[40]
孙曼曼. 胶原仿生模型的构建及其在乳腺癌体外研究中的应用[D].广州:暨南大学,2020.
[41]
周晋,陈奕,丁健. 基底膜和肿瘤转移[J]. 生理科学进展2006, 37(4): 307-312.
[42]
Christofori G. New signals from the invasive front[J]. Nature, 2006, 441 (7092): 444-450.
[43]
Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited[J]. J Cell Biol, 2009, 185 (1): 11-19.
[44]
Gonzalez-Avila G, Sommer B, García-Hernández AA, et al. Matrix metalloproteinases’ role in tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1245:97-131.
[45]
Thompson EW, Yu M, Bueno J, et al. Collagen induced MMP-2 activation in human breast cancer[J]. Breast Cancer Res Treat, 1994, 31 (2-3): 357-370.
[46]
Walker C, Mojares E, Del Río Hernández A. Role of extracellular matrix in development and cancer progression[J]. Int J Mol Sci, 2018, 19 (10):3028.
[47]
Condeelis J, Segall JE. Intravital imaging of cell movement in tumours[J]. Nat Rev Cancer, 2003, 3 (12): 921-930.
[48]
Wyckoff JB, Wang Y, Lin EY, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors[J]. Cancer Res, 2007, 67 (6): 2649-2656.
[49]
Riching KM, Cox BL, Salick MR, et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence[J]. Biophys J, 2014, 107 (11): 2546-2558.
[50]
Provenzano PP, Inman DR, Eliceiri KW, et al. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization[J]. Biophys J, 2008, 95 (11): 5374-5384.
[51]
Ray A, Lee O, Win Z, et al. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration[J]. Nat Commun, 2017, 8: 14 923.
[52]
Li X, Wang J. Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis[J].Int J Biol Sci, 2020, 16 (12): 2014-2028.
[53]
Stylianopoulos T, Martin JD, Chauhan VP, et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors[J]. Proc Natl Acad Sci U S A, 2012, 109 (38): 15 101-15 108.
[54]
Cheng G, Tse J, Jain RK, et al. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells[J]. PLoS One, 2009, 4 (2): e4632.
[55]
Kakkad SM, Penet MF, Akhbardeh A, et al. Hypoxic tumor environments exhibit disrupted collagen I fibers and low macromolecular transport[J]. PLoS One, 2013, 8 (12): e81869.
[56]
Northcott JM, Dean IS, Mouw JK, et al. Feeling stress: the mechanics of cancer progression and aggression[J]. Front Cell Dev Biol, 2018, 6:17.
[57]
Spencer A, Sligar AD, Chavarria D, et al. Biomechanical regulation of breast cancer metastasis and progression[J]. Sci Rep, 2021, 11 (1): 9838.
[58]
Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling[J]. Cell, 2009, 139 (5): 891-906.
[59]
Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression[J]. J Clin Invest, 2012, 122 (11): 4243-4256.
[60]
Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease[J]. Nat Rev Cancer, 2009, 9 (9): 665-674.
[61]
Huang Y, Wang Y, Tang J, et al. CAM-DR:mechanisms, roles and clinical application in tumors[J]. Front Cell Dev Biol, 2021, 9: 698 047.
[62]
Baltes F, Pfeifer V, Silbermann K, et al. β-integrin binding to collagen type 1 transmits breast cancer cells into chemoresistance by activating ABC efflux transporters[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867 (5): 118 663.
[63]
Hanker AB, Estrada MV, Bianchini G, et al. Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER2 and PI3K in HER2 breast cancer[J]. Cancer Res, 2017, 77(12): 3280-3292.
[64]
Heldin C-H, Rubin K, Pietras K, et al. High interstitial fluid pressure-an obstacle in cancer therapy[J]. Nat Rev Cancer, 2004, 4(10): 806-813.
[65]
Netti PA, Berk DA, Swartz MA, et al. Role of extracellular matrix assembly in interstitial transport in solid tumors[J]. Cancer Res, 2000, 60 (9): 2497-2503.
[66]
Minchinton AI, Tannock IF. Drug penetration in solid tumours[J]. Nat Rev Cancer, 2006, 6 (8): 583-592.
[67]
Zhao CL, Singh K, Brodsky AS, et al. Stromal ColXα1 expression correlates with tumor-infiltrating lymphocytes and predicts adjuvant therapy outcome in ER-positive/HER2-positive breast cancer[J]. BMC Cancer, 2019, 19 (1): 1036.
[68]
Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer[J]. J Clin Oncol, 2010, 28 (1): 105-113.
[69]
Brodsky AS, Xiong J, Yang D, et al. Identification of stromal ColXalpha1 and tumor-infiltrating lymphocytes as putative predictive markers of neoadjuvant therapy in estrogen receptor-positive/HER2-positive breast cancer[J]. BMC Cancer, 2016, 16: 274.
[70]
Paidi SK, Diaz PM, Dadgar S, et al. Label-free Raman spectroscopy reveals signatures of radiation resistance in the tumor microenvironment[J]. Cancer Res, 2019, 79 (8): 2054-2064.
[71]
Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside[J]. J Transl Med, 2019, 17 (1): 309.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[10] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[11] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[12] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[13] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[14] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[15] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?