[1] |
Harris LN, Ismaila N, McShane , et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline[J]. J Clin Oncol, 2016, 34: 1134-1150.
|
[2] |
Heidi LR, Sherri JB, Pinar BT,et al. ACMG clinical laboratory standards for next-generation sequencing[J]. Genet Med, 2013,15(9):733-747.
|
[3] |
Duffy MJ, Harbeck N, Nap M, et al. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM)[J]. Eur J Cancer, 2017,75:284-298.
|
[4] |
Giuliano AE, Connolly JL, Edge SB, et al. Breast cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual[J]. CA Cancer J Clin, 2017,67(4):290-303.
|
[5] |
Sparano JA, Gray RJ, Makower DF, et al. Prospective validation of a 21-gene expression assay in breast cancer[J]. N Engl J Med, 2015,373(21):2005-2014.
|
[6] |
Stemmer S, Steiner M, Rizel S, et al. 1963 first prospective outcome data in 930 patients with more than 5 year median follow up in whom treatment decisions in clinical practice have been made incorporating the 21-gene recurrence score[J]. Eur J Cancer, 2015, 51:S321.
|
[7] |
Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer[J]. N Engl J Med, 2004,351(27):2817-2826.
|
[8] |
van’t Veer LJ, Paik S, Hayes DF. Gene expression profiling of breast cancer: a new tumor marker[J]. J Clin Oncol, 2005,23(8):1631-1635.
|
[9] |
Buyse M, Loi S, van’t Veer L, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer[J]. J Natl Cancer Inst, 2006, 98(17):1183-1192.
|
[10] |
Huang TT, Chen AC, Lu TP, et.al. Clinical-genomic models of node-positive breast cancer: Training, testing, and validation[J]. Int J Radiat Oncol Biol Phys, 2019,105(3):637-648.
|
[11] |
Huang TT, Lei L, Chen CA,et al. A new clinical-genomic model to predict 10-year recurrence risk in primary operable breast cancer patients[J]. Sci Rep, 2020, 10(1):4861.
|
[12] |
Paik S, Shak S, Tang G, et al. Expression of the 21 genes in the recurrence score assay and tamoxifen clinical benefit in the NSABP study B-14 of node negative, estrogen receptor positive breast cancer[J]. J Clin Oncol, 2005, 23(161): 6.
|
[13] |
Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor positive breast cancer [J]. J Clin Oncol, 2006, 24:3726-3734.
|
[14] |
Woodward WA, Barlow WE, Jagsi R, et al. Association between 21-Gene assay recurrence score and locoregional recurrence rates in patients with node-positive breast cncer[J]. JAMA Oncol,2020,6(4):505-511.
|
[15] |
National Comprehensive Cancer Network.NCCN clinical practice guidelines in oncology: Breast Cancer(Vision 3.2020)[EB/OL].(2020-03-26)[2020-09-11].
URL
|
[16] |
Sparano JA, Gray RJ, Ravdin PM, et al. Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer [J]. N Engl J Med,2019,380(25):2395-2405.
|
[17] |
Andre F, Ismaila N, Henry NL, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: ASCO clinical practice guideline update-integration of results from TAILORx[J]. J Clin Oncol,2019,37(22):1956-1964.
|
[18] |
Gluz O, Nitz U, Christgen M, et al. Prospective WSG phase Ⅲ plan b trial: clinical outcome at 5 year follow up and impact of 21 gene recurrence score result, central/ local-pathological review of grade, ER, PR and Ki-67 in HR+/HER-2-high risk node-negative and -positive breast cancer [J]. Euro J Cancer, 2016, 572(suppl 2): S6.
|
[19] |
Kalinsky K, Barlow WE, Meric-Bernstam F, et al. First results from a phase Ⅲ randomized clinical trial of standard adjuvant endocrine therapy (ET) +/- chemotherapy(CT) in patients (pts) with 1-3 positive nodes, hormone receptor-positive (HR+) and HER2-negative (HER2-) breast cancer (BC) with recurrence score (RS) < 25:SWOG S1007 (RxPonder)[C]. 2020 San Antonio Breast Cancer Virtual Symposium, Texas, USA, 2020. New York:Springer,2020.
|
[20] |
van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression proiling predicts clinical outcome of breast cancer[J]. Nature, 2002, 415(6871):530-536.
|
[21] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011,144(5):646-674.
|
[22] |
Bueno-de-Mesquita JM, van Harten WH, Retel VP, et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER) [J]. Lancet Oncol, 2007,8(12):1079-1087.
|
[23] |
National Working Group on Ethics Oncology. Breast cancer Country directive[EB/OL].[2020-09-10].
URL
|
[24] |
Drukker CA, Bueno-de-Mesquita JM, Retel VP, et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study[J]. Int J Cancer, 2013,133(4):929-936.
|
[25] |
Cardoso F, van’t Veer LJ, Bogaerts J, et al. 70-Gene signature as an aid to treatment decision in early-stage breast cancer[J]. N Engl J Med, 2016, 375(8):717-729.
|
[26] |
Brandao M, Ponde N, Piccart-Gebhart M. Mammaprint™:a comprehensive review[J]. Future Oncol, 2019, 15(2):207-224.
|
[27] |
Piccart M, van’t Veer LJ, Poncet C, et al. 70-gene signature as an aid for treatment decisions in early breast cancer: updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age[J]. Lancet Oncol, 2021,22(4):476-488.
|
[28] |
Knauer M, Cardoso F, Wesseling J, et al. Identification of a low-risk subgroup of HER-2-positive breast cancer by the 70-gene prognosis signature[J]. Br J Cancer, 2010, 103(12): 1788-1793.
|
[29] |
Saghatchian M, Mook S, Pruneri G, et al. Additional prognostic value of the 70-gene signature (Mammaprint) among breast cancer patients with 4-9 positive lymph nodes[J]. Breast, 2013, 22(5): 682-690.
|
[30] |
Bueno-de-Mesquita JM, Sonke GS, Vijver VDJM, et al. Additional value and potential use of the 70-gene prognosis signature in node-negative breast cancer in daily clinical practice[J]. Ann Oncol, 2011, 22(9):2021-2030.
|
[31] |
Drukker CA, Elias SG, Nijenhuis MV, et al. Gene expression profiling to predict the risk of locoregional recurrence in breast cancer: a pooled analysis[J]. Breast Cancer Res Treat, 2014, 148(3): 599-613.
|
[32] |
Desmedt C, Haibe-Kains B, Wirapati P, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes[J]. Clin Cancer Res, 2008, 14(16): 5158-5165.
|
[33] |
Straver ME, Glas AM, Hannemann J, et al. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer[J]. Breast Cancer Res Treat, 2010, 119(3): 551-558.
|
[34] |
Nanda R, Liu MC, Yau C, et al. Effect of Pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: An analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial[J]. JAMA Oncol, 2020,6(5):676-684.
|
[35] |
Rugo HS, Olopade OI, DeMichele A, et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer[J]. N Engl J Med, 2016, 375(1): 23-34.
|
[36] |
Blumencranz LE, Shivers SC, Untch S, et al. MINT trial yields Mammaprint™ High1/High2 risk classes associated with significant differences in pCR and receptor subtype[J]. Cancer Res, 2017, 77(Suppl 4):P5-16-05.
|
[37] |
Krop I, Ismaila N, Andre F, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update[J]. J Clin Oncol, 2017, 35(24): 2838-2847.
|
[38] |
National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: Breast cancer(Vision 3.2018)[EB/OL].(2018-03-28)[2020-09-11].
URL
|
[39] |
Amin MB, Edge SB, Greene FL, et al. AJCC cancer staging manual[M]. 8th ed. New York: Springer, 2016:589-628.
|
[40] |
Bartlett JM, Bayani J, Marshall A, et al. Comparing breast cancer multiparameter tests in the OPTIMA prelim trial: no test is more equal than the others[J]. J Natl Cancer Inst, 2016,108(9): djw050.
|
[41] |
Haibe-Kains B, Desmedt C, Piette F, et al. Comparison of prognostic gene expression signatures for breast cancer[J]. BMC Genomics, 2008, 9(1):394.
|
[42] |
Gauchan D, Ramaekers R, Copur SM. Cost-effectiveness of molecular profiling for early breast cancer[J]. J Clin Oncol, 2015, 33(14): 1627-1628.
|
[43] |
Fan C, Oh DS, Wessels L, et al. Concordance among gene-expression-based predictors for breast cancer[J]. N Engl J Med, 2006, 355(6): 560-569.
|
[44] |
Sestak I, Dowsett M, Zabaglo L, et al. Factors predicting late recurrence for estrogen receptor-positive breast cancer[J]. J Natl Cancer Inst, 2013, 105(19): 1504-1511.
|
[45] |
Dowsett M, Sestak I, Lopez-Knowles E, et al. Comparison of PAM50 risk of recurrence score with onco type DX and IHC4 for predicting risk of distant recurrence after endocrine therapy[J]. J Clin Oncol, 2013, 31(22): 2783-2790.
|
[46] |
Sestak I, Buus R, Cuzick J, et al. Comprehensive comparison of prognostic signatures for breast cancer in TransATAC[EB/OL]. (2017-12-20)[2020-9-11].
URL
|
[47] |
Sestak I, Buus R, Cuzick J, et al. Comparison of the performance of 6 prognostic signatures for estrogen receptor-positive breast cancer: A secondary analysis of a randomized clinical trial[J]. JAMA Oncol, 2018, 4(4): 545-553.
|
[48] |
Esserman LJ, Yau C, Thompson CK, et al. Use of molecular tools to identify patients with indolent breast cancers with ultralow risk over 2 decades[J]. JAMA Oncol, 2017, 3(11): 1503-1510.
|
[49] |
Gluck S, de Snoo F, Peeters J, et al. Molecular subtyping of early-stage breast cancer identifies a group of patients who do not benefit from neoadjuvant chemotherapy[J]. Breast Cancer Res Treat, 2013, 139(3): 759-767.
|
[50] |
Whitworth P, Beitsch P, Mislowsky A, et al. Chemosensitivity and endocrine sensitivity in clinical luminal breast cancer patients in the prospective neoadjuvant breast registry symphony trial (NBRST) predicted by molecular subtyping[J]. Ann Surg Oncol,2017, 24(3): 669-675.
|
[51] |
Cheng SH, Horng CF, Huang TT, et al. An eighteen-gene classifier predicts locoregional recurrence in post-mastectomy breast cancer patients[J]. EBioMedicine, 2016, 5:74-81.
|
[52] |
Cheng SH, Huang TT, Cheng YH, et al. Validation of the 18-gene classifier as a prognostic biomarker of distant metastasis in breast cancer[J]. PLoS One, 2017, 12(9):e0184372.
|
[53] |
Huang TT, Pennarun N, Cheng YH, et al. Gene expression profiling in prognosis of distant recurrence in HR-positive and HER-2-negative breast cancer patients[J]. Oncotarget, 2018, 9(33):23 173-23 182.
|
[54] |
Yang PS, Lee YH, Chung CF, et al. A preliminary report of head-to-head comparison of 18-gene-based clinical-genomic model and oncotype DX 21-gene assay for predicting recurrence of early-stage breast cancer[J]. Jpn J Clin Oncol, 2019, 49(11):1029-1036.
|
[55] |
Sorlie T,,Tibshirani R,,Parker J,et al. Repeated observation of breast tumor subtypes in independent gene expression datasets[J]. Proc Natl Acad Sci USA,2003,100 (14):8418-8423.
|
[56] |
Lænkholm AV, Jensen MB, Ejlertsen B,et al. PAM50 risk of recurrence score predicts 10-year distant recurrence in a comprehensive Danish cohort of postmenopausal women allocated to 5 years of endocrine therapy for hormone receptor-positive early breast cancer[J]. J Clin Oncol, 2018, 36(8):735-740.
|
[57] |
Ohnstadh O,,Borgen E,,Falk RS,et al. Prognostic value of PAM50 and risk of recurrence score in patients with early-stage breast cancer with long-term follow-up[J]. Breast Cancer Res,2017,19(1):120.
|
[58] |
Gnant M, Sestak I, Cuzick J,et al. Identifying clinically relevant prognostic subgroups of postmenopausal women with node-positive hormone receptor-positive early-stage breast cancer treated with endocrine therapy: a combined analysis of ABCSG-8 and ATAC using the PAM50 risk of recurrence score and intrinsic subtype[J]. Ann Oncol, 2015, 26(8):1685-1691.
|
[59] |
Filipits M,,Rudas M,,Jakesz R, et al. A new molecular predictor of distant recurrence in ER-positive, HER-2-negative breast cancer adds independent information to conventional clinical risk factors[J]. Clin Cancer Res, 2011,17(18):6012-6020.
|
[60] |
Dubsky P, Brase JC, Jakesz R, et al. The EndoPredict score provides prognostic information on late distant metastases in ER+/HER-2-breast cancer patients[J]. Br J Cancer,2013,109(12):2959-2964.
|
[61] |
Buus R, Sestak I, Kronenwett R, et al. Comparison of EndoPredict and EPclin with Oncotype DX recurrence score for prediction of risk of distant recurrence after endocrine therapy[J]. J Natl Cancer Inst, 2016, 108(11):djw149.
|
[62] |
Ma XJ,,Salunga R,,Dahiya S, et al. A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer[J]. Clin Cancer Res, 2008, 14(9):2601-2608.
|
[63] |
Zhang Y, Schnabel CA, Schroeder BE, et al. Breast cancer index identifies early-stage estrogen receptor-positive breast cancer patients at risk for early- and late-distant recurrence[J]. Clin Cancer Res, 2013, 19(15):4196-4205.
|
[64] |
Sgroi DC,,Sestak I,,Cuzick J, et al. Prediction of late distant recurrence in patients with oestrogen-receptor-positive breast cancer: a prospective comparison of the breast-cancer index (BCI) assay, 21-gene recurrence score, and IHC4 in the TransATAC study population[J]. Lancet Oncol,2013,14(11):1067-1076.
|
[65] |
Sanft T, Aktas B, Schroeder B, et al. Prospective assessment of the decision-making impact of the Breast Cancer Index in recommending extended adjuvant endocrine therapy for patients with early-stage ER-positive breast cancer[J]. Breast Cancer Res Treat, 2015, 154(3):533-541.
|
[66] |
Sgroi DC, Chapman JA, Badovinac-Crnjevic T, et al. Assessment of the prognostic and predictive utility of the Breast Cancer Index (BCI): an NCIC CTG MA.14 study[J]. Breast Cancer Res, 2016, 18(1):1.
|
[67] |
Cardoso F, Kyriakides S, Ohno S, et al. Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2019,30(8):1194-1220.
|
[68] |
Amin MB, Edge S, Greene F, et al. AJCC Cancer Staging Manual[M]. 8th ed. New York: Springer,2017:345-376.
|
[69] |
Iwata H, Masuda N, Yamamoto Y, et al. Validation of the 21-gene test as a predictor of clinical response to neoadjuvant hormonal therapy for ER+,HER-2-negative breast cancer: the TransNEOS study[J]. Breast Cancer Res Treat,2019,173(1): 123-133.
|
[70] |
Gong Y, Ji P, Yang YS, et al. Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets[J]. Cell Metab,2021,33(1):51-64.
|
[71] |
Llombart Cussac A, Perez-Garcia J, Guerrero A, et al. Neoadjuvant letrozole and palbociclib in stage Ⅱ-ⅢB HR +/HER2 - breast cancer with Oncotype DX Recurrence Score (RS) 18-25 or 26-100. Analysis of RS changes at surgery (DxCARTES trial)[C]. AACR Annual Meeting,Atlanta,USA,2019.New York:Springer,2019.
|
[72] |
中国抗癌协会乳腺癌专业委员会.中国抗癌协会乳腺癌诊治指南与规范(2019年版)[J].中国癌症杂志,2019,29(8):609-680.
|
[73] |
Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature,2000,406:747-752.
|