切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 247 -251. doi: 10.3877/cma.j.issn.1674-0807.2021.04.011

所属专题: 文献

综述

细胞周期蛋白依赖性激酶4/6抑制剂在乳腺癌治疗中的应用
徐颖1, 孙强1,()   
  1. 1. 100005 中国医学科学院北京协和医学院北京协和医院乳腺外科
  • 收稿日期:2020-11-23 出版日期:2021-09-08
  • 通信作者: 孙强

Inhibitors of cyclin-dependent kinase 4/6 for breast cancer treatment

Ying Xu1, Qiang Sun1()   

  • Received:2020-11-23 Published:2021-09-08
  • Corresponding author: Qiang Sun
引用本文:

徐颖, 孙强. 细胞周期蛋白依赖性激酶4/6抑制剂在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2021, 15(04): 247-251.

Ying Xu, Qiang Sun. Inhibitors of cyclin-dependent kinase 4/6 for breast cancer treatment[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(04): 247-251.

乳腺癌是女性常见的恶性肿瘤,激素受体/HER-2阴性乳腺癌是乳腺癌的常见类型。细胞周期蛋白依赖性激酶(CDK)4/6抑制剂为该类型乳腺癌的治疗带来了新的希望。笔者对CDK4/6抑制剂在乳腺癌治疗中的研究进展、相关临床试验、应用现状及耐药性等问题等进行综述,供同行参考。

图1 细胞周期蛋白依赖性激酶4/6抑制剂抑制细胞增殖的分子机制
[1]
Torre LA, Islami F, Siegel RL, et al.Global cancer in women: burden and trends[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(4): 444-457.
[2]
Migliaccio I, Malorni L, Hart CD, et al.Endocrine therapy considerations in postmenopausal patients with hormone receptor positive, human epidermal growth factor receptor type 2 negative advanced breast cancers[J]. BMC Med, 2015, 13: 46.
[3]
Joy AA, Ghosh M, Fernandes R, et al.Systemic treatment approaches in her2-negative advanced breast cancer-guidance on the guidelines[J]. Curr Oncol, 2015, 22(Suppl 1): S29-S42.
[4]
Daly MB, Pal T, Berry MP, et al. Genetic/familial high-risk assessment: breast, ovarian, and pancreatic, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(1):77-102.
[5]
U.S. Food and Drug Administration. Palbocilib(IBRANCE)[EB/OL].[2020-11-10].

URL    
[6]
U.S. Food and Drug Administration. Ribocilib(Kisqali) [EB/OL].[2020-11-10].

URL    
[7]
U.S. Food and Drug Administration.FDA aprroves abemaciclib for HR-positive,HER2-negative breast cancer[EB/OL].[2020-11-10].

URL    
[8]
Cristofanilli M, Turner NC, Bondarenko I, et al.Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial[J]. Lancet Oncol, 2016, 17(4): 425-439.
[9]
Malumbres M.Cyclin-dependent kinases[J]. Genome Biol, 2014, 15(6): 122.
[10]
Hortobagyi GN, Stemmer SM, Burris HA, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer[J]. N Engl J Med, 2016, 375(18): 1738-1748.
[11]
Otto T, Sicinski P.Cell cycle proteins as promising targets in cancer therapy[J]. Nat Rev Cancer, 2017, 17(2): 93-115.
[12]
Shapiro GI.Cyclin-dependent kinase pathways as targets for cancer treatment[J]. J Clin Oncol, 2006, 24(11): 1770-1783.
[13]
Canavese M, Santo L, Raje N.Cyclin dependent kinases in cancer: potential for therapeutic intervention[J]. Cancer Biol Ther, 2012, 13(7): 451-457.
[14]
Benson C, White J, De Bono J, et al.A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days[J]. Br J Cancer, 2007, 96(1): 29-37.
[15]
Sausville EA, Arbuck SG, Messmann R, et al. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms[J]. J Clin Oncol, 2001, 19(8): 2319-2333.
[16]
Kalra S, Joshi G, Munshi A, et al.Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors[J]. Eur J Med Chem, 2017, 142: 424-458.
[17]
Toogood PL, Harvey PJ, Repine JT, et al.Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6[J]. J Med Chem, 2005, 48(7): 2388-2406.
[18]
Fry DW, Harvey PJ, Keller PR, et al.Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts[J]. Mol Cancer Ther, 2004, 3(11): 1427-1438.
[19]
Finn RS, Dering J, Conklin D, et al.PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro[J]. Breast Cancer Res, 2009, 11(5): R77.
[20]
Beaver JA, Amiri-Kordestani L, Charlab R, et al. FDA approval: palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer[J]. Clin Cancer Res, 2015, 21(21): 4760-4766.
[21]
Finn RS, Crown JP, Lang I, et al.The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study[J]. Lancet Oncol, 2015, 16(1): 25-35.
[22]
Finn RS, Martin M, Rugo HS, et al.Palbociclib and letrozole in advanced breast cancer[J]. N Engl J Med, 2016, 375(20): 1925-1936.
[23]
Johnston S, Puhalla S, Wheatley D, et al.Randomized phase II study evaluating palbociclib in addition to letrozole as neoadjuvant therapy in estrogen receptor-positive early breast cancer: PALLET trial[J]. J Clin Oncol, 2019, 37(3): 178-189.
[24]
Mayer EL, Dueck AC, Martin M, et al.Palbociclib with adjuvant endocrine therapy in early breast cancer (PALLAS): interim analysis of a multicentre, open-label, randomised, phase 3 study[J]. Lancet Oncol, 2021, 22(2): 212-222.
[25]
DeMichele A, Clark AS, Tan KS, et al.CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment[J]. Clin Cancer Res, 2015, 21(5): 995-1001.
[26]
Pandey K, An HJ, Kim SK, et al.Molecular mechanisms of resistance to CDK4/6 inhibitors in breast cancer: A review[J]. Int J Cancer, 2019, 145(5): 1179-1188.
[27]
Curigliano G, Gomez Pardo P, Meric-Bernstam F, et al.Ribociclib plus letrozole in early breast cancer: A presurgical, window-of-opportunity study[J]. Breast, 2016, 28: 191-198.
[28]
Slamon DJ, Neven P, Chia S, et al.Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3[J]. J Clin Oncol, 2018, 36(24): 2465-2472.
[29]
Tripathy D, Im SA, Colleoni M, et al.Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial[J]. Lancet Oncol, 2018, 19(7): 904-915.
[30]
Gelbert LM, Cai S, Lin X, et al.Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine[J]. Invest New Drugs, 2014, 32(5): 825-837.
[31]
Turtle CJ, Hay KA, Hanafi LA, et al.Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib[J]. J Clin Oncol, 2017, 35(26): 3010-3020.
[32]
Spring L, Bardia A, Modi S.Targeting the cyclin D-cyclin-dependent kinase (CDK) 4/6-retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: rationale, current status, and future directions[J]. Discov Med, 2016, 21(113): 65-74.
[33]
Dickler MN, Tolaney SM, Rugo HS, et al.MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR(+)/HER2(-) metastatic breast cancer[J]. Clin Cancer Res, 2017, 23(17): 5218-5224.
[34]
Sledge GW Jr, Toi M, Neven P, et al.MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy[J]. J Clin Oncol, 2017, 35(25): 2875-2884.
[35]
Johnston S, Martin M, Di Leo A, et al.MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer[J]. NPJ Breast Cancer, 2019, 5: 5.
[36]
Johnston SRD, Harbeck N, Hegg R, et al.Abemaciclib combined with endocrine therapy for the adjuvant treatment of HR+,HER2-,node-positive, high-risk, early breast cancer (monarchE)[J]. J Clin Oncol, 2020, 38(34): 3987-3998.
[37]
Guarducci C, Bonechi M, Boccalini G, et al.Mechanisms of resistance to CDK4/6 inhibitors in breast cancer and potential biomarkers of response[J]. Breast Care (Basel), 2017, 12(5): 304-308.
[38]
Cen L, Carlson BL, Schroeder MA, et al.p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells[J]. Neuro Oncol, 2012, 14(7): 870-881.
[39]
Condorelli R, Spring L, O’Shaughnessy J, et al.Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer[J]. Ann Oncol, 2018, 29(3): 640-645.
[40]
Konecny GE, Winterhoff B, Kolarova T, et al.Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer[J]. Clin Cancer Res, 2011, 17(6): 1591-1602.
[41]
Dean JL, McClendon AK, Hickey TE, et al.Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors[J]. Cell Cycle, 2012, 11(14): 2756-2761.
[42]
Sahores A, May M, Sequeira GR, et al.Targeting FGFR with BGJ398 in breast cancer: effect on tumor growth and metastasis[J]. Curr Cancer Drug Targets, 2018, 18(10): 979-987.
[43]
Turner N, Pearson A, Sharpe R, et al.FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer[J]. Cancer Res, 2010, 70(5): 2085-2094.
[44]
Takeshita T, Yamamoto Y, Yamamoto-Ibusuki M, et al.Clinical significance of plasma cell-free DNA mutations in PIK3CA, AKT1, and ESR1 gene according to treatment lines in ER-positive breast cancer[J]. Mol Cancer, 2018, 17(1): 67.
[45]
Jansen VM, Bhola NE, Bauer JA, et al.Kinome-wide RNA interference screen reveals a role for PDK1 in acquired resistance to CDK4/6 inhibition in ER-positive breast cancer[J]. Cancer Res, 2017, 77(9): 2488-2499.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?