切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 235 -237. doi: 10.3877/cma.j.issn.1674-0807.2021.04.008

所属专题: 文献

综述

细胞骨架在乳腺癌中的研究进展
刘亚利1, 陈雪松1,()   
  1. 1. 150081 哈尔滨医科大学附属肿瘤医院乳腺肿瘤内科
  • 收稿日期:2019-03-09 出版日期:2021-09-08
  • 通信作者: 陈雪松
  • 基金资助:
    国家自然科学基金面上项目(81573001)

Research progress of cytoskeleton in breast cancer

Yali Liu1, Xuesong Chen1()   

  • Received:2019-03-09 Published:2021-09-08
  • Corresponding author: Xuesong Chen
引用本文:

刘亚利, 陈雪松. 细胞骨架在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2021, 15(04): 235-237.

Yali Liu, Xuesong Chen. Research progress of cytoskeleton in breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(04): 235-237.

细胞骨架参与细胞的运动、黏附、形态改变、有丝分裂和凋亡等多种生命活动,它不仅仅是简单的结构框架,现已作为癌症侵袭、转移的关键因素被广泛研究。肿瘤细胞改变其形态及黏附能力从而进行迁移、侵袭的过程是由细胞骨架控制的。细胞骨架以特定的方式参与RhoGTPases、mTOR和Hippo等信号通路的信号转导,更是与黏附、凋亡等细胞活动有着千丝万缕的联系。更好地理解细胞骨架的动态重塑以及它与乳腺癌各方面的联系,将有利于发现新的疗治靶点。笔者就近年来发表的文献,以乳腺癌为代表对细胞骨架的研究进展进行综述。

[1]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 202171(1):7-33.
[2]
Zhang Y, Tian J, Qu C, et al. A look into the link between centrosome amplification and breast cancer[J]. Biomed Pharmacother, 132:110 924.
[3]
Wu Q, Chen D, Luo Q, et al. Extracellular matrix protein 1 recruits moesin to facilitate invadopodia formation and breast cancer metastasis[J]. Cancer Lett, 2018, 437:44-55.
[4]
Garrone O, Miraglio E, Vandone AM, et al. Eribulin in advanced breast cancer: safety, efficacy and new perspectives[J]. Future Oncol, 2017, 13(30):2759-2769.
[5]
McGarry DJ, Armstrong G, Castino G, et al. MICAL1 regulates actin cytoskeleton organization, directional cell migration and the growth of human breast cancer cells as orthotopic xenograft tumours [J]. Cancer Lett2021519:226-236.
[6]
Liu CW, Lin YC, Hung CM,et al. CHM-1, a novel microtubule-destabilizing agent exhibits antitumor activity via inducing the expression of SIRT2 in human breast cancer cells[J]. Chem Biol Interact, 2018289:98-108.
[7]
Hohmann T, Dehghani F. The cytoskeleton—A complex interacting meshwork[J]. Cells, 2019, 8(4):362.
[8]
Linthicum W, Thanh MH, Vitolo MI, et al. Effects of PTEN loss and activated KRAS overexpression on mechanical properties of breast epithelial cells[J]. Int J Mol Sci, 2018, 19(6):1613.
[9]
Xiang C, Chen J, Fu P. HGF/Met signaling in cancer invasion: the impact on cytoskeleton remodeling[J]. Cancers (Basel), 2017, 9(5):44.
[10]
Ogden A, Rida PCG, Aneja R. Centrosome amplification: a suspect in breast cancer and racial disparities[J]. Endocr Relat Cancer, 201724(9):T47-T64.
[11]
O’Toole SM, Chapple JP. Primary cilia: a link between hormone signalling and endocrine-related cancers?[J]. Biochem Soc Trans, 201644(5):1227-1234.
[12]
Al Absi A, Wurzer H, Guerin C,et al. Actin cytoskeleton remodeling drives breast cancer cell escape from naturalkiller-mediated cytotoxicity[J]. Cancer Res201878(19):5631-5643.
[13]
Katschnig AM, Kauer MO, Schwentner R,et al. EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma[J]. Oncogene201736(43):5995-6005.
[14]
Ebata T, Hirata H, Kawauchi K. Functions of the tumor suppressors p53 and Rb in actin cytoskeleton remodeling[J]. Biomed Res Int, 20162016:9 231 057.
[15]
Yin M, Lu Q, Liu X, et al. Silencing Drp1 inhibits glioma cells proliferation and invasion by RHOA/ ROCK1 pathway[J]. Biochem Biophys Res Commun, 2016, 478(2):663-668.
[16]
Cascione M, De VM, Toma CC, et al. Morphomechanical and structural changes induced by ROCK inhibitor in breast cancer cells.[J]. Exp Cell Res, 2017360(2):303-309.
[17]
Orditura M, Della Corte CM, Diana A, et al. Three dimensional primary cultures for selecting human breast cancers that are sensitive to the anti-tumor activity of ipatasertib or taselisib in combination with anti-microtubule cytotoxic drugs [J].Breast201841:165-171.
[18]
Linthicum W, Thanh MH, Vitolo MI, et al. Effects of PTEN loss and activated KRAS overexpression on mechanical properties of breast epithelial cells [J]. Int J Mol Sci2018, 19(6):1613.
[19]
Haase G, Gavert N, Brabletz T, et al. The Wnt target gene L1 in colon cancer invasion and metastasis[J]. Cancers (Basel), 2016, 8(5):48.
[20]
Xiang T, Fan Y, Li C, et al. DACT2 silencing by promoter CpG methylation disrupts its regulation of epithelial-to-mesenchymal transition and cytoskeleton reorganization in breast cancer cells[J]. Oncotarget, 2016, 7(43):70 924-70 935.
[21]
Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation[J]. Genes Dev, 2016, 30(1):1-17.
[22]
Chang YC, Wu JW, Wang CW, et al. Hippo signaling-mediated mechanotransduction in cell movement and cancer metastasis[J]. Front Mol Biosci20206:157.
[23]
Zhang C, Wang F, Gao Z, et al. Regulation of Hippo signaling by mechanical signals and the cytoskeleton[J]. DNA Cell Biol, 202039(2):159-166.
[24]
Osuchowska PN, Wachulak P, Kasprzycka W, et al. Adhesion of triple-negative breast cancer cells under fluorescent and soft X-ray contact microscopy[J]. Int J Mol Sci, 202122(14):7279.
[25]
Wang Y, Xu M, Ke ZJ, et al. Cellular and molecular mechanisms underlying alcohol-induced aggressiveness of breast cancer[J]. Pharmacol Res, 2017, 115:299-308.
[26]
Mytilinaiou M, Nikitovic D, Berdiaki A,et al.Emerging roles of syndecan 2 in epithelial and mesenchymal cancer progression[J].IUBMB Life, 201769(11):824-833.
[27]
Povea-Cabello S, Oropesa-ávila M, de la Cruz-Ojeda P, et al. Dynamic reorganization of the cytoskeleton during apoptosis: the two coffins hypothesis[J]. Int J Mol Sci201718(11):2393.
[28]
Liang Y, Chen H, Ji L, et al. Talin2 regulates breast cancer cell migration and invasion by apoptosis.[J]. Oncol Lett2018, 16(1):285-293.
[29]
Chen Z, Yang L, Cui Y, et al. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages[J]. Oncotarget, 2016, 7(41):67 387-67 402.
[30]
Niu C, Wang X, Zhao M, et al. Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion[J]. J Am Heart Assoc, 2016, 5(10): e004099.
[31]
Gabrusiewicz K, Li X, Wei J, et al. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes[J]. Oncoimmunology, 20187(4):e1412909.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要