切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 235 -237. doi: 10.3877/cma.j.issn.1674-0807.2021.04.008

所属专题: 文献

综述

细胞骨架在乳腺癌中的研究进展
刘亚利1, 陈雪松1,()   
  1. 1. 150081 哈尔滨医科大学附属肿瘤医院乳腺肿瘤内科
  • 收稿日期:2019-03-09 出版日期:2021-09-08
  • 通信作者: 陈雪松
  • 基金资助:
    国家自然科学基金面上项目(81573001)

Research progress of cytoskeleton in breast cancer

Yali Liu1, Xuesong Chen1()   

  • Received:2019-03-09 Published:2021-09-08
  • Corresponding author: Xuesong Chen
引用本文:

刘亚利, 陈雪松. 细胞骨架在乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2021, 15(04): 235-237.

Yali Liu, Xuesong Chen. Research progress of cytoskeleton in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(04): 235-237.

细胞骨架参与细胞的运动、黏附、形态改变、有丝分裂和凋亡等多种生命活动,它不仅仅是简单的结构框架,现已作为癌症侵袭、转移的关键因素被广泛研究。肿瘤细胞改变其形态及黏附能力从而进行迁移、侵袭的过程是由细胞骨架控制的。细胞骨架以特定的方式参与RhoGTPases、mTOR和Hippo等信号通路的信号转导,更是与黏附、凋亡等细胞活动有着千丝万缕的联系。更好地理解细胞骨架的动态重塑以及它与乳腺癌各方面的联系,将有利于发现新的疗治靶点。笔者就近年来发表的文献,以乳腺癌为代表对细胞骨架的研究进展进行综述。

[1]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 202171(1):7-33.
[2]
Zhang Y, Tian J, Qu C, et al. A look into the link between centrosome amplification and breast cancer[J]. Biomed Pharmacother, 132:110 924.
[3]
Wu Q, Chen D, Luo Q, et al. Extracellular matrix protein 1 recruits moesin to facilitate invadopodia formation and breast cancer metastasis[J]. Cancer Lett, 2018, 437:44-55.
[4]
Garrone O, Miraglio E, Vandone AM, et al. Eribulin in advanced breast cancer: safety, efficacy and new perspectives[J]. Future Oncol, 2017, 13(30):2759-2769.
[5]
McGarry DJ, Armstrong G, Castino G, et al. MICAL1 regulates actin cytoskeleton organization, directional cell migration and the growth of human breast cancer cells as orthotopic xenograft tumours [J]. Cancer Lett2021519:226-236.
[6]
Liu CW, Lin YC, Hung CM,et al. CHM-1, a novel microtubule-destabilizing agent exhibits antitumor activity via inducing the expression of SIRT2 in human breast cancer cells[J]. Chem Biol Interact, 2018289:98-108.
[7]
Hohmann T, Dehghani F. The cytoskeleton—A complex interacting meshwork[J]. Cells, 2019, 8(4):362.
[8]
Linthicum W, Thanh MH, Vitolo MI, et al. Effects of PTEN loss and activated KRAS overexpression on mechanical properties of breast epithelial cells[J]. Int J Mol Sci, 2018, 19(6):1613.
[9]
Xiang C, Chen J, Fu P. HGF/Met signaling in cancer invasion: the impact on cytoskeleton remodeling[J]. Cancers (Basel), 2017, 9(5):44.
[10]
Ogden A, Rida PCG, Aneja R. Centrosome amplification: a suspect in breast cancer and racial disparities[J]. Endocr Relat Cancer, 201724(9):T47-T64.
[11]
O’Toole SM, Chapple JP. Primary cilia: a link between hormone signalling and endocrine-related cancers?[J]. Biochem Soc Trans, 201644(5):1227-1234.
[12]
Al Absi A, Wurzer H, Guerin C,et al. Actin cytoskeleton remodeling drives breast cancer cell escape from naturalkiller-mediated cytotoxicity[J]. Cancer Res201878(19):5631-5643.
[13]
Katschnig AM, Kauer MO, Schwentner R,et al. EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma[J]. Oncogene201736(43):5995-6005.
[14]
Ebata T, Hirata H, Kawauchi K. Functions of the tumor suppressors p53 and Rb in actin cytoskeleton remodeling[J]. Biomed Res Int, 20162016:9 231 057.
[15]
Yin M, Lu Q, Liu X, et al. Silencing Drp1 inhibits glioma cells proliferation and invasion by RHOA/ ROCK1 pathway[J]. Biochem Biophys Res Commun, 2016, 478(2):663-668.
[16]
Cascione M, De VM, Toma CC, et al. Morphomechanical and structural changes induced by ROCK inhibitor in breast cancer cells.[J]. Exp Cell Res, 2017360(2):303-309.
[17]
Orditura M, Della Corte CM, Diana A, et al. Three dimensional primary cultures for selecting human breast cancers that are sensitive to the anti-tumor activity of ipatasertib or taselisib in combination with anti-microtubule cytotoxic drugs [J].Breast201841:165-171.
[18]
Linthicum W, Thanh MH, Vitolo MI, et al. Effects of PTEN loss and activated KRAS overexpression on mechanical properties of breast epithelial cells [J]. Int J Mol Sci2018, 19(6):1613.
[19]
Haase G, Gavert N, Brabletz T, et al. The Wnt target gene L1 in colon cancer invasion and metastasis[J]. Cancers (Basel), 2016, 8(5):48.
[20]
Xiang T, Fan Y, Li C, et al. DACT2 silencing by promoter CpG methylation disrupts its regulation of epithelial-to-mesenchymal transition and cytoskeleton reorganization in breast cancer cells[J]. Oncotarget, 2016, 7(43):70 924-70 935.
[21]
Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation[J]. Genes Dev, 2016, 30(1):1-17.
[22]
Chang YC, Wu JW, Wang CW, et al. Hippo signaling-mediated mechanotransduction in cell movement and cancer metastasis[J]. Front Mol Biosci20206:157.
[23]
Zhang C, Wang F, Gao Z, et al. Regulation of Hippo signaling by mechanical signals and the cytoskeleton[J]. DNA Cell Biol, 202039(2):159-166.
[24]
Osuchowska PN, Wachulak P, Kasprzycka W, et al. Adhesion of triple-negative breast cancer cells under fluorescent and soft X-ray contact microscopy[J]. Int J Mol Sci, 202122(14):7279.
[25]
Wang Y, Xu M, Ke ZJ, et al. Cellular and molecular mechanisms underlying alcohol-induced aggressiveness of breast cancer[J]. Pharmacol Res, 2017, 115:299-308.
[26]
Mytilinaiou M, Nikitovic D, Berdiaki A,et al.Emerging roles of syndecan 2 in epithelial and mesenchymal cancer progression[J].IUBMB Life, 201769(11):824-833.
[27]
Povea-Cabello S, Oropesa-ávila M, de la Cruz-Ojeda P, et al. Dynamic reorganization of the cytoskeleton during apoptosis: the two coffins hypothesis[J]. Int J Mol Sci201718(11):2393.
[28]
Liang Y, Chen H, Ji L, et al. Talin2 regulates breast cancer cell migration and invasion by apoptosis.[J]. Oncol Lett2018, 16(1):285-293.
[29]
Chen Z, Yang L, Cui Y, et al. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages[J]. Oncotarget, 2016, 7(41):67 387-67 402.
[30]
Niu C, Wang X, Zhao M, et al. Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion[J]. J Am Heart Assoc, 2016, 5(10): e004099.
[31]
Gabrusiewicz K, Li X, Wei J, et al. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes[J]. Oncoimmunology, 20187(4):e1412909.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要