[1] |
Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review[J]. Lancet, 2012, 380(9855):1778-1786.
|
[2] |
Moore SG, Shenoy PJ, Fanucchi L, et al. Cost-effectiveness of MRI compared to mammography for breast cancer screening in a high risk population[J]. BMC Health Serv Res, 2009, 9:9.
|
[3] |
Le E, Wang Y, Huang Y, et al. Artificial intelligence in breast imaging[J]. Clin Radiol, 2019, 74(5):357-366.
|
[4] |
Burt JR, Torosdagli N, Khosravan N, et al. Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks[J]. Br J Radiol, 2018, 91(1089):20170545.
|
[5] |
Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Trans Neural Netw, 2006, 17(4):879-892.
|
[6] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
|
[7] |
Ardila D, Kiraly AP, Bharadwaj S, et al. Author correction: end-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography[J]. Nat Med, 2019, 25(8):1319.
|
[8] |
Tandel GS, Biswas M, Kakde OG, et al. A review on a deep learning perspective in brain cancer classification[J]. Cancers (Basel), 2019, 11(1):111.
|
[9] |
Wang P, Xiao X, Glissen Brown JR, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy[J]. Nat Biomed Eng, 2018, 2(10):741-748.
|
[10] |
Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features[J]. Eur Radiol, 2019, 29(7):3348-3357.
|
[11] |
Lin YC, Lin CH, Lu HY, et al. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer[J]. Eur Radiol, 2020, 30(3):1297-1305.
|
[12] |
Schelb P, Kohl S, Radtke JP, et al. Classification of cancer at prostate MRI: deep learning versus clinical PI-RADS assessment[J]. Radiology, 2019, 293(3):607-617.
|
[13] |
Gastounioti A, Conant EF, Kontos D. Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment[J]. Breast Cancer Res, 2016, 18(1):91.
|
[14] |
Arefan D, Mohamed AA, Berg WA, et al. Deep learning modeling using normal mammograms for predicting breast cancer risk[J]. Med Phys, 2020, 47(1):110-118.
|
[15] |
Sprague BL, Conant EF, Onega T, et al. Variation in mammographic breast density assessments among radiologists in clinical practice: a multicenter observational study[J]. Ann Intern Med, 2016, 165(7):457-464.
|
[16] |
Yala A, Lehman C, Schuster T, et al. A deep learning mammography-based model for improved breast cancer risk prediction[J]. Radiology, 2019, 292(1):60-66.
|
[17] |
Shi B, Grimm LJ, Mazurowski MA, et al. Prediction of occult invasive disease in ductal carcinoma in situ using deep learning features[J]. J Am Coll Radiol, 2018, 15(3 Pt B):527-534.
|
[18] |
Fenton JJ, Taplin SH, Carney PA, et al. Influence of computer-aided detection on performance of screening mammography[J]. N Engl J Med, 2007, 356(14):1399-1409.
|
[19] |
Lehman CD, Wellman RD, Buist DS, et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection[J]. JAMA Intern Med, 2015, 175(11):1828-1837.
|
[20] |
Gao Y, Geras KJ, Lewin AA, et al. New frontiers: an update on computer-aided diagnosis for breast imaging in the age of artificial intelligence[J]. AJR Am J Roentgenol, 2019, 212(2):300-307.
|
[21] |
Ribli D, Horváth A, Unger Z, et al. Detecting and classifying lesions in mammograms with deep learning[J]. Sci Rep, 2018, 8(1):4165.
|
[22] |
Sankar D, Thomas T. A new fast fractal modeling approach for the detection of microcalcifications in mammograms[J]. J Digit Imaging, 2010, 23(5):538-546.
|
[23] |
Iacomi M, Cascio D, Fauci F, et al. Mammographic images segmentation based on chaotic map clustering algorithm[J]. BMC Med Imaging, 2014, 14:12.
|
[24] |
Cai H, Huang Q, Rong W, et al. Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms[J]. Comput Math Methods Med, 2019, 2019:2 717 454.
|
[25] |
Wang J, Yang X, Cai H, et al. Discrimination of breast cancer with microcalcifications on mammography by deep learning[J]. Sci Rep, 2016, 6:27 327.
|
[26] |
Gao Y, Babb JS, Toth HK, et al. Digital breast tomosynthesis practice patterns following 2011 FDA approval: a survey of breast imaging radiologists[J]. Acad Radiol, 2017, 24(8):947-953.
|
[27] |
Zhang X, Zhang Y, Han EY, et al. Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks[J]. IEEE Trans Nanobioscience, 2018, 17(3):237-242.
|
[28] |
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: general overview[J]. Korean J Radiol, 2017, 18(4):570-584.
|
[29] |
Samala RK, Chan H, Hadjiiski L, et al. Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets[J]. IEEE Trans Med Imaging, 2019, 38(3):686-696.
|
[30] |
Aboutalib SS, Mohamed AA, Berg WA, et al. Deep learning to distinguish recalled but benign mammography images in breast cancer screening[J]. Clin Cancer Res, 2018, 24(23):5902-5909.
|
[31] |
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42:60-88.
|
[32] |
Mendel K, Li H, Sheth D, et al. Transfer learning from convolutional neural networks for computer-aided diagnosis: a comparison of digital breast tomosynthesis and full-field digital mammography[J]. Acad Radiol, 2019, 26(6):735-743.
|
[33] |
Bart E, Hegdé J. Deep synthesis of realistic medical images: a novel tool in clinical research and training[J]. Front Neuroinform, 2018, 12:82.
|
[34] |
Guan S, Loew M. Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks[J]. J Med Imaging (Bellingham), 2019, 6(3):031 411.
|
[35] |
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019,25(1):24-29.
|