切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 238 -241. doi: 10.3877/cma.j.issn.1674-0807.2021.04.009

所属专题: 文献

综述

深度学习在乳腺X线摄影中的应用
邢家诚1, 闫石1, 蔡莉1,()   
  1. 1. 150081 哈尔滨医科大学附属第三医院乳腺内科二病区
  • 收稿日期:2020-09-05 出版日期:2021-09-08
  • 通信作者: 蔡莉

Application of deep learning in mammography

Jiacheng Xing1, Shi Yan1, Li Cai1()   

  • Received:2020-09-05 Published:2021-09-08
  • Corresponding author: Li Cai
引用本文:

邢家诚, 闫石, 蔡莉. 深度学习在乳腺X线摄影中的应用[J]. 中华乳腺病杂志(电子版), 2021, 15(04): 238-241.

Jiacheng Xing, Shi Yan, Li Cai. Application of deep learning in mammography[J]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(04): 238-241.

近年来,人工智能在乳腺X线摄影中有着十分广泛的应用。目前,深度学习已经成为人工智能图像处理领域最先进的手段之一,其对肿瘤位置的确定和肿瘤性质的判定已经达到专业影像医师的程度。此外,深度学习还具有其他重要功能,如:构建预测模型,评估患病风险;提取成像特征,降低召回率;合成乳腺X线图像用于教育和科研等。笔者对深度学习的概念及其在乳腺X线摄影中的应用作一综述,供乳腺科和医学影像科医师参考。

图1 机器学习、神经网络、深度学习和卷积神经网络的关系图
图2 深度学习系统的分层结构
[1]
Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review[J]. Lancet, 2012, 380(9855):1778-1786.
[2]
Moore SG, Shenoy PJ, Fanucchi L, et al. Cost-effectiveness of MRI compared to mammography for breast cancer screening in a high risk population[J]. BMC Health Serv Res, 2009, 9:9.
[3]
Le E, Wang Y, Huang Y, et al. Artificial intelligence in breast imaging[J]. Clin Radiol, 2019, 74(5):357-366.
[4]
Burt JR, Torosdagli N, Khosravan N, et al. Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks[J]. Br J Radiol, 2018, 91(1089):20170545.
[5]
Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Trans Neural Netw, 2006, 17(4):879-892.
[6]
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[7]
Ardila D, Kiraly AP, Bharadwaj S, et al. Author correction: end-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography[J]. Nat Med, 2019, 25(8):1319.
[8]
Tandel GS, Biswas M, Kakde OG, et al. A review on a deep learning perspective in brain cancer classification[J]. Cancers (Basel), 2019, 11(1):111.
[9]
Wang P, Xiao X, Glissen Brown JR, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy[J]. Nat Biomed Eng, 2018, 2(10):741-748.
[10]
Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features[J]. Eur Radiol, 2019, 29(7):3348-3357.
[11]
Lin YC, Lin CH, Lu HY, et al. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer[J]. Eur Radiol, 2020, 30(3):1297-1305.
[12]
Schelb P, Kohl S, Radtke JP, et al. Classification of cancer at prostate MRI: deep learning versus clinical PI-RADS assessment[J]. Radiology, 2019, 293(3):607-617.
[13]
Gastounioti A, Conant EF, Kontos D. Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment[J]. Breast Cancer Res, 2016, 18(1):91.
[14]
Arefan D, Mohamed AA, Berg WA, et al. Deep learning modeling using normal mammograms for predicting breast cancer risk[J]. Med Phys, 2020, 47(1):110-118.
[15]
Sprague BL, Conant EF, Onega T, et al. Variation in mammographic breast density assessments among radiologists in clinical practice: a multicenter observational study[J]. Ann Intern Med, 2016, 165(7):457-464.
[16]
Yala A, Lehman C, Schuster T, et al. A deep learning mammography-based model for improved breast cancer risk prediction[J]. Radiology, 2019, 292(1):60-66.
[17]
Shi B, Grimm LJ, Mazurowski MA, et al. Prediction of occult invasive disease in ductal carcinoma in situ using deep learning features[J]. J Am Coll Radiol, 2018, 15(3 Pt B):527-534.
[18]
Fenton JJ, Taplin SH, Carney PA, et al. Influence of computer-aided detection on performance of screening mammography[J]. N Engl J Med, 2007, 356(14):1399-1409.
[19]
Lehman CD, Wellman RD, Buist DS, et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection[J]. JAMA Intern Med, 2015, 175(11):1828-1837.
[20]
Gao Y, Geras KJ, Lewin AA, et al. New frontiers: an update on computer-aided diagnosis for breast imaging in the age of artificial intelligence[J]. AJR Am J Roentgenol, 2019, 212(2):300-307.
[21]
Ribli D, Horváth A, Unger Z, et al. Detecting and classifying lesions in mammograms with deep learning[J]. Sci Rep, 2018, 8(1):4165.
[22]
Sankar D, Thomas T. A new fast fractal modeling approach for the detection of microcalcifications in mammograms[J]. J Digit Imaging, 2010, 23(5):538-546.
[23]
Iacomi M, Cascio D, Fauci F, et al. Mammographic images segmentation based on chaotic map clustering algorithm[J]. BMC Med Imaging, 2014, 14:12.
[24]
Cai H, Huang Q, Rong W, et al. Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms[J]. Comput Math Methods Med, 2019, 2019:2 717 454.
[25]
Wang J, Yang X, Cai H, et al. Discrimination of breast cancer with microcalcifications on mammography by deep learning[J]. Sci Rep, 2016, 6:27 327.
[26]
Gao Y, Babb JS, Toth HK, et al. Digital breast tomosynthesis practice patterns following 2011 FDA approval: a survey of breast imaging radiologists[J]. Acad Radiol, 2017, 24(8):947-953.
[27]
Zhang X, Zhang Y, Han EY, et al. Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks[J]. IEEE Trans Nanobioscience, 2018, 17(3):237-242.
[28]
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: general overview[J]. Korean J Radiol, 2017, 18(4):570-584.
[29]
Samala RK, Chan H, Hadjiiski L, et al. Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets[J]. IEEE Trans Med Imaging, 2019, 38(3):686-696.
[30]
Aboutalib SS, Mohamed AA, Berg WA, et al. Deep learning to distinguish recalled but benign mammography images in breast cancer screening[J]. Clin Cancer Res, 2018, 24(23):5902-5909.
[31]
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42:60-88.
[32]
Mendel K, Li H, Sheth D, et al. Transfer learning from convolutional neural networks for computer-aided diagnosis: a comparison of digital breast tomosynthesis and full-field digital mammography[J]. Acad Radiol, 2019, 26(6):735-743.
[33]
Bart E, Hegdé J. Deep synthesis of realistic medical images: a novel tool in clinical research and training[J]. Front Neuroinform, 2018, 12:82.
[34]
Guan S, Loew M. Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks[J]. J Med Imaging (Bellingham), 2019, 6(3):031 411.
[35]
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare[J]. Nat Med, 201925(1):24-29.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[5] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[6] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[7] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[8] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[9] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[10] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[11] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[12] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[13] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[14] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[15] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
阅读次数
全文


摘要