切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 181 -184. doi: 10.3877/cma.j.issn.1674-0807.2021.03.010

综述

错配修复基因与乳腺癌研究现状
季午阳1, 罗斌1,()   
  1. 1. 1002218 北京,清华大学附属北京清华长庚医院普通外科
  • 收稿日期:2020-03-03 出版日期:2021-07-01
  • 通信作者: 罗斌

Current researches on mismatch repair genes and breast cancer

Wuyang Ji1, Bin Luo1()   

  • Received:2020-03-03 Published:2021-07-01
  • Corresponding author: Bin Luo
引用本文:

季午阳, 罗斌. 错配修复基因与乳腺癌研究现状[J]. 中华乳腺病杂志(电子版), 2021, 15(03): 181-184.

Wuyang Ji, Bin Luo. Current researches on mismatch repair genes and breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(03): 181-184.

错配修复(MMR)基因主要对DNA复制过程中的碱基错配进行修复,发生突变则会使DNA稳定性下降,造成微卫星不稳定,进而突变累积,导致恶性肿瘤发生。此类型肿瘤主要表现在结直肠癌及子宫内膜癌中。近年来,多项研究表明,MMR基因在乳腺癌中也有一定程度的表达缺失,结合微卫星不稳定及肿瘤突变负荷可对特定分子分型的乳腺癌预后有预测价值,对免疫治疗及内分泌耐药的晚期乳腺癌解救治疗均有一定的指导意义。目前,MMR基因与乳腺癌发生、发展的相关性研究较少。笔者对MMR基因、微卫星不稳定与乳腺癌发病、临床特点、免疫治疗及预后等的关系进行综述。

图1 人类DNA错配修复机制简化模式图 a图所示,hMutSα二聚体(hMSH2蛋白和hMSH6蛋白结合)识别DNA复制中的单个碱基错配位点,并与hMutLα二聚体(hMLH1蛋白和hPMS2蛋白结合)结合,对碱基错配进行修复;b图所示,hMutSβ二聚体(hMSH2蛋白和hMSH3蛋白结合)识别DNA复制中多个碱基缺失/插入的位点,并与hMutLα二聚体(hMLH1蛋白和hPMS2蛋白结合)及部分hMutLβ二聚体(hMLH1蛋白和hMLH3蛋白结合)结合,对插入/缺失错配进行修复
[1]
Modrich P. Mechanisms and biological effects of mismatch repair [J]. Annu Rev Genet, 1991,25:229-253.
[2]
Lipkin SM, Wang V, Jacoby R, et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability[J]. Nat Genet, 2000,24(1):27-35.
[3]
Steinke V, Engel C, Büttner R, et al. Hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome[J]. Dtsch Arztebl Int, 2013,110(3):32-38.
[4]
Svrcek M, Lascols O, Cohen R, et al. MSI/MMR-deficient tumor diagnosis: Which standard for screening and for diagnosis? Diagnostic modalities for the colon and other sites: Differences between tumors[J]. Bull Cancer, 2019,106(2):119-128.
[5]
Latham A, Srinivasan P, Kemel Y, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer [J]. J Clin Oncol, 2019,37(4):286-295.
[6]
Sha D, Jin Z, Budczies J, et al. Tumor mutational burden as a predictive biomarker in solid tumors[J]. Cancer Discov, 2020, 10(12):1808-1825.
[7]
Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100 000 human cancer genomes reveals the landscape of tumor mutational burden[J]. Genome Med, 2017,9(1):34.
[8]
Zhuang W, Ma J, Chen X, et al. The tumor mutational burden of Chinese advanced cancer patients estimated by a 381-cancer-gene panel[J]. J Cancer, 2018,9(13):2302-2307.
[9]
Xu J, Guo X, Jing M, et al. Prediction of tumor mutation burden in breast cancer based on the expression of ER, PR, HER-2, and Ki-67[J]. Onco Targets Ther, 2018,11:2269-2275.
[10]
Xu J, Bao H, Wu X, et al. Elevated tumor mutation burden and immunogenic activity in patients with hormone receptor-negative or human epidermal growth factor receptor 2-positive breast cancer[J]. Oncol Lett, 2019,18(1):449-455.
[11]
Voutsadakis IA. High tumor mutation burden and other immunotherapy response predictors in breast cancers: associations and therapeutic opportunities[J]. Target Oncol, 2020,15(1):127-138.
[12]
Giannakis M, Mu XJ, Shukla SA, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma[J]. Cell Rep, 2016,15(4):857-865.
[13]
Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach[J]. Ann Oncol, 2019,30(8):1232-1243.
[14]
Barroso-Sousa R, Jain E, Cohen O, et al. Prevalence and mutational determinants of high tumor mutation burden in breast cancer[J]. Ann Oncol, 2020,31(3):387-394.
[15]
Fusco N, Lopez G, Corti C, et al. Mismatch repair protein loss as a prognostic and predictive biomarker in breast cancers regardless of microsatellite instability[J]. JNCI Cancer Spectr, 2018,2(4):pky056.
[16]
Cheng AS, Leung SCY, Gao D, et al. Mismatch repair protein loss in breast cancer: clinicopathological associations in a large British Columbia cohort [J]. Breast Cancer Res Treat, 2020,179(1):3-10.
[17]
Davies H, Morganella S, Purdie CA, et al. Whole-genome sequencing reveals breast cancers with mismatch repair deficiency.[J] Cancer Res, 2017,77(18):4755-4762.
[18]
Nguyen-Dumont T, Steen JA, Winship I, et al. Mismatch repair gene pathogenic germline variants in a population-based cohort of breast cancer[J]. Fam Cancer, 2020,19(3):197-202.
[19]
Lopez G, Fusco N. RE: Mismatch repair protein loss in breast cancer: clinicopathological associations in a large British Columbia cohort[J]. Breast Cancer Res Treat, 2020,180(1):265-266.
[20]
Kappil M, Terry MB, Delgado-Cruzata L,et al. Mismatch repair polymorphisms as markers of breast cancer prevalence in the breast cancer family registry[J]. Anticancer Res, 2016,36(9):4437-4441.
[21]
Espenschied CR, LaDuca H, Li S, et al. Multigene panel testing provides a new perspective on Lynch syndrome[J]. J Clin Oncol, 2017,35(22):2568-2575.
[22]
Roberts ME, Jackson SA, Susswein LR, et al. MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer[J]. Genet Med, 2018,20(10):1167-1174.
[23]
Sheehan M, Heald B, Yanda C, et al. Investigating the link between Lynch syndrome and breast cancer[J]. Eur J Breast Health, 2020,16(2):106-109.
[24]
National Comprehensive Cancer Network. NCCN practice guidelines: genetic/familial high-risk assessment: breast, ovarian, and pancreatic. version 2.2021[EB/OL]. [2021-04-05].

URL    
[25]
Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast --screening with MRI as an adjunct to mammography[J]. CA Cancer J Clin, 2007,57(2):75-89.
[26]
Monticciolo DL, Newell MS, Moy L, et al. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR[J]. J Am Coll Radiol, 2018,15(3 Pt A):408-414.
[27]
Sorscher S. The importance of distinguishing sporadic cancers from those related to cancer predisposing germline mutations[J]. Oncologist, 2018,23(11):1266-1268.
[28]
Sorscher S. Rationale for evaluating breast cancers of Lynch syndrome patients for mismatch repair gene expression[J]. Breast Cancer Res Treat, 2019,178(2):469-471.
[29]
Kanaya N, Tanakaya K, Yamasaki R, et al. Clinicopathological features of breast cancer in Japanese female patients with Lynch syndrome[J]. Breast Cancer, 2019,26(3):359-364.
[30]
Smolarz B, Makowska M, Samulak D, et al. Gly322Asp and Asn127Ser single nucleotide polymorphisms (SNPs) of hMSH2 mismatch repair gene and the risk of triple-negative breast cancer in Polish women[J]. Fam Cancer, 2015,14(1):81-88.
[31]
Malik SS, Zia A, Mubarik S, et al. Correlation of MLH1 polymorphisms, survival statistics, in silico assessment and gene downregulation with clinical outcomes among breast cancer cases[J]. Mol Biol Rep, 2020,47(1):683-692.
[32]
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discov, 2015,5(1):43-51.
[33]
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015,372(26):2509-2520.
[34]
Prasad V, Kaestner V, Mailankody S. Cancer drugs approved based on biomarkers and not tumor type-FDA approval of pembrolizumab for mismatch repair-deficient solid cancers[J]. JAMA Oncol, 2018,4(2):157-158.
[35]
Mills AM, Dill EA, Moskaluk CA, et al. The relationship between mismatch repair deficiency and PD-L1 expression in breast carcinoma[J]. Am J Surg Pathol, 2018,42(2):183-191.
[36]
Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer[J]. N Engl J Med, 2018,379(22):2108-2121.
[37]
US Food and Drug Administration. FDA approves atezolizumab for PD-L1 positive unresectable locally advanced or metastatic triple negative breast cancer[EB/OL]. [2021-04-05].

URL    
[38]
Haricharan S, Punturi N, Singh P, et al. Loss of MutL disrupts CHK2-dependent cell-cycle control through CDK4/6 to promote intrinsic endocrine therapy resistance in primary breast cancer[J]. Cancer Discov, 2017,7(10):1168-1183.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[13] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.
阅读次数
全文


摘要