切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 181 -184. doi: 10.3877/cma.j.issn.1674-0807.2021.03.010

综述

错配修复基因与乳腺癌研究现状
季午阳1, 罗斌1,()   
  1. 1. 1002218 北京,清华大学附属北京清华长庚医院普通外科
  • 收稿日期:2020-03-03 出版日期:2021-07-01
  • 通信作者: 罗斌

Current researches on mismatch repair genes and breast cancer

Wuyang Ji1, Bin Luo1()   

  • Received:2020-03-03 Published:2021-07-01
  • Corresponding author: Bin Luo
引用本文:

季午阳, 罗斌. 错配修复基因与乳腺癌研究现状[J/OL]. 中华乳腺病杂志(电子版), 2021, 15(03): 181-184.

Wuyang Ji, Bin Luo. Current researches on mismatch repair genes and breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(03): 181-184.

错配修复(MMR)基因主要对DNA复制过程中的碱基错配进行修复,发生突变则会使DNA稳定性下降,造成微卫星不稳定,进而突变累积,导致恶性肿瘤发生。此类型肿瘤主要表现在结直肠癌及子宫内膜癌中。近年来,多项研究表明,MMR基因在乳腺癌中也有一定程度的表达缺失,结合微卫星不稳定及肿瘤突变负荷可对特定分子分型的乳腺癌预后有预测价值,对免疫治疗及内分泌耐药的晚期乳腺癌解救治疗均有一定的指导意义。目前,MMR基因与乳腺癌发生、发展的相关性研究较少。笔者对MMR基因、微卫星不稳定与乳腺癌发病、临床特点、免疫治疗及预后等的关系进行综述。

图1 人类DNA错配修复机制简化模式图 a图所示,hMutSα二聚体(hMSH2蛋白和hMSH6蛋白结合)识别DNA复制中的单个碱基错配位点,并与hMutLα二聚体(hMLH1蛋白和hPMS2蛋白结合)结合,对碱基错配进行修复;b图所示,hMutSβ二聚体(hMSH2蛋白和hMSH3蛋白结合)识别DNA复制中多个碱基缺失/插入的位点,并与hMutLα二聚体(hMLH1蛋白和hPMS2蛋白结合)及部分hMutLβ二聚体(hMLH1蛋白和hMLH3蛋白结合)结合,对插入/缺失错配进行修复
[1]
Modrich P. Mechanisms and biological effects of mismatch repair [J]. Annu Rev Genet, 1991,25:229-253.
[2]
Lipkin SM, Wang V, Jacoby R, et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability[J]. Nat Genet, 2000,24(1):27-35.
[3]
Steinke V, Engel C, Büttner R, et al. Hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome[J]. Dtsch Arztebl Int, 2013,110(3):32-38.
[4]
Svrcek M, Lascols O, Cohen R, et al. MSI/MMR-deficient tumor diagnosis: Which standard for screening and for diagnosis? Diagnostic modalities for the colon and other sites: Differences between tumors[J]. Bull Cancer, 2019,106(2):119-128.
[5]
Latham A, Srinivasan P, Kemel Y, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer [J]. J Clin Oncol, 2019,37(4):286-295.
[6]
Sha D, Jin Z, Budczies J, et al. Tumor mutational burden as a predictive biomarker in solid tumors[J]. Cancer Discov, 2020, 10(12):1808-1825.
[7]
Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100 000 human cancer genomes reveals the landscape of tumor mutational burden[J]. Genome Med, 2017,9(1):34.
[8]
Zhuang W, Ma J, Chen X, et al. The tumor mutational burden of Chinese advanced cancer patients estimated by a 381-cancer-gene panel[J]. J Cancer, 2018,9(13):2302-2307.
[9]
Xu J, Guo X, Jing M, et al. Prediction of tumor mutation burden in breast cancer based on the expression of ER, PR, HER-2, and Ki-67[J]. Onco Targets Ther, 2018,11:2269-2275.
[10]
Xu J, Bao H, Wu X, et al. Elevated tumor mutation burden and immunogenic activity in patients with hormone receptor-negative or human epidermal growth factor receptor 2-positive breast cancer[J]. Oncol Lett, 2019,18(1):449-455.
[11]
Voutsadakis IA. High tumor mutation burden and other immunotherapy response predictors in breast cancers: associations and therapeutic opportunities[J]. Target Oncol, 2020,15(1):127-138.
[12]
Giannakis M, Mu XJ, Shukla SA, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma[J]. Cell Rep, 2016,15(4):857-865.
[13]
Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach[J]. Ann Oncol, 2019,30(8):1232-1243.
[14]
Barroso-Sousa R, Jain E, Cohen O, et al. Prevalence and mutational determinants of high tumor mutation burden in breast cancer[J]. Ann Oncol, 2020,31(3):387-394.
[15]
Fusco N, Lopez G, Corti C, et al. Mismatch repair protein loss as a prognostic and predictive biomarker in breast cancers regardless of microsatellite instability[J]. JNCI Cancer Spectr, 2018,2(4):pky056.
[16]
Cheng AS, Leung SCY, Gao D, et al. Mismatch repair protein loss in breast cancer: clinicopathological associations in a large British Columbia cohort [J]. Breast Cancer Res Treat, 2020,179(1):3-10.
[17]
Davies H, Morganella S, Purdie CA, et al. Whole-genome sequencing reveals breast cancers with mismatch repair deficiency.[J] Cancer Res, 2017,77(18):4755-4762.
[18]
Nguyen-Dumont T, Steen JA, Winship I, et al. Mismatch repair gene pathogenic germline variants in a population-based cohort of breast cancer[J]. Fam Cancer, 2020,19(3):197-202.
[19]
Lopez G, Fusco N. RE: Mismatch repair protein loss in breast cancer: clinicopathological associations in a large British Columbia cohort[J]. Breast Cancer Res Treat, 2020,180(1):265-266.
[20]
Kappil M, Terry MB, Delgado-Cruzata L,et al. Mismatch repair polymorphisms as markers of breast cancer prevalence in the breast cancer family registry[J]. Anticancer Res, 2016,36(9):4437-4441.
[21]
Espenschied CR, LaDuca H, Li S, et al. Multigene panel testing provides a new perspective on Lynch syndrome[J]. J Clin Oncol, 2017,35(22):2568-2575.
[22]
Roberts ME, Jackson SA, Susswein LR, et al. MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer[J]. Genet Med, 2018,20(10):1167-1174.
[23]
Sheehan M, Heald B, Yanda C, et al. Investigating the link between Lynch syndrome and breast cancer[J]. Eur J Breast Health, 2020,16(2):106-109.
[24]
National Comprehensive Cancer Network. NCCN practice guidelines: genetic/familial high-risk assessment: breast, ovarian, and pancreatic. version 2.2021[EB/OL]. [2021-04-05].

URL    
[25]
Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast --screening with MRI as an adjunct to mammography[J]. CA Cancer J Clin, 2007,57(2):75-89.
[26]
Monticciolo DL, Newell MS, Moy L, et al. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR[J]. J Am Coll Radiol, 2018,15(3 Pt A):408-414.
[27]
Sorscher S. The importance of distinguishing sporadic cancers from those related to cancer predisposing germline mutations[J]. Oncologist, 2018,23(11):1266-1268.
[28]
Sorscher S. Rationale for evaluating breast cancers of Lynch syndrome patients for mismatch repair gene expression[J]. Breast Cancer Res Treat, 2019,178(2):469-471.
[29]
Kanaya N, Tanakaya K, Yamasaki R, et al. Clinicopathological features of breast cancer in Japanese female patients with Lynch syndrome[J]. Breast Cancer, 2019,26(3):359-364.
[30]
Smolarz B, Makowska M, Samulak D, et al. Gly322Asp and Asn127Ser single nucleotide polymorphisms (SNPs) of hMSH2 mismatch repair gene and the risk of triple-negative breast cancer in Polish women[J]. Fam Cancer, 2015,14(1):81-88.
[31]
Malik SS, Zia A, Mubarik S, et al. Correlation of MLH1 polymorphisms, survival statistics, in silico assessment and gene downregulation with clinical outcomes among breast cancer cases[J]. Mol Biol Rep, 2020,47(1):683-692.
[32]
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discov, 2015,5(1):43-51.
[33]
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015,372(26):2509-2520.
[34]
Prasad V, Kaestner V, Mailankody S. Cancer drugs approved based on biomarkers and not tumor type-FDA approval of pembrolizumab for mismatch repair-deficient solid cancers[J]. JAMA Oncol, 2018,4(2):157-158.
[35]
Mills AM, Dill EA, Moskaluk CA, et al. The relationship between mismatch repair deficiency and PD-L1 expression in breast carcinoma[J]. Am J Surg Pathol, 2018,42(2):183-191.
[36]
Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer[J]. N Engl J Med, 2018,379(22):2108-2121.
[37]
US Food and Drug Administration. FDA approves atezolizumab for PD-L1 positive unresectable locally advanced or metastatic triple negative breast cancer[EB/OL]. [2021-04-05].

URL    
[38]
Haricharan S, Punturi N, Singh P, et al. Loss of MutL disrupts CHK2-dependent cell-cycle control through CDK4/6 to promote intrinsic endocrine therapy resistance in primary breast cancer[J]. Cancer Discov, 2017,7(10):1168-1183.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[2] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[13] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[14] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[15] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
阅读次数
全文


摘要