| [1] | Dong Y, He D, Peng Z, et al. Circular RNAs in cancer: an emerging key player[J]. J Hematol Oncol, 2017, 10: 2-10. | 
																													
																						| [2] | Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015, 444: 132-136. | 
																													
																						| [3] | Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker[J]. J Biotechnol, 2016, 238: 42-51. | 
																													
																						| [4] | 魏开鹏,陈海莺,陈燕红,等. 三阴性乳腺癌中程序性死亡配体1的表达及其与PTEN基因的关系[J/CD]. 中华乳腺病杂志(电子版), 2018, 12(5): 294-298. | 
																													
																						| [5] | 韩晓翠,左晓丽,李敏,等. 微RNA 221/222在乳腺癌中的研究进展[J/CD].中华乳腺病杂志(电子版), 2017, 11(6): 369-371. | 
																													
																						| [6] | Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73(11): 3852-3856. | 
																													
																						| [7] | Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979, 280(5720): 339-340. | 
																													
																						| [8] | Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons[J]. Cell, 1991, 64(3): 607-613. | 
																													
																						| [9] | Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993, 7(1): 155-160. | 
																													
																						| [10] | You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity[J]. Nat Neurosci, 2015, 18(4): 603-610. | 
																													
																						| [11] | Ghosal S, Das S, Sen R, et al. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits[J]. Front Genet, 2013, 4: 283. | 
																													
																						| [12] | Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. | 
																													
																						| [13] | Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338. | 
																													
																						| [14] | Li J, Yang J, Zhou P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015, 5(2): 472-480. | 
																													
																						| [15] | Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations[J]. Cell, 2016, 165(2): 289-302. | 
																													
																						| [16] | Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs[J]. Mol Cell, 2017, 66(1): 9-21. | 
																													
																						| [17] | Yang Y, Fan X, Mao M et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641. | 
																													
																						| [18] | Huang C, Liang D, Tatomer DC, et al. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J]. Gene Dev, 2018, 32(9/10): 639-644. | 
																													
																						| [19] | Qu S, Liu Z, Yang X, et al. The emerging functions and roles of circular RNAs in cancer[J]. Cancer Lett, 2018, 414: 301-309. | 
																													
																						| [20] | Kos A, Dijkema R, Arnberg AC, et al. The hepatitis delta (delta) virus possesses a circular RNA[J]. Nature,1986,323(6088): 558-560. | 
																													
																						| [21] | Harland R, Misher L. Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA[J]. Development, 1988, 102(4): 837-852. | 
																													
																						| [22] | Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs[J]. Science, 1995, 268(5209): 415-417. | 
																													
																						| [23] | Dubin RA, Kazmi MA, Ostrer H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript[J]. Gene, 1995, 167(1/2): 245-248. | 
																													
																						| [24] | Perriman R, Ares M Jr. Circular mRNA can direct translation of extremely long repeating-sequence, proteins in vivo[J]. RNA, 1998, 4(9): 1047-1054 | 
																													
																						| [25] | Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing[J]. Nucleic Acids Res, 2006, 34(8): e63. | 
																													
																						| [26] | Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk[J]. PLoS Genet, 2010, 6(12): e1001233. | 
																													
																						| [27] | Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012, 7(2): e30733. | 
																													
																						| [28] | Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134-147. | 
																													
																						| [29] | Piwecka M, Glažar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function[J]. Science,2017,357(6357): eaam8526. | 
																													
																						| [30] | Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. | 
																													
																						| [31] | 张进威,龙科任,王讯,等. 环状RNA研究进展[J]. 畜牧兽医学报,2016, 47(11): 2151-2158. | 
																													
																						| [32] | Zhang HD, Jiang LH, Sun DW, et al. CircRNA: a novel type of biomarker for cancer[J]. Breast Cancer, 2018, 25(1): 1-7. | 
																													
																						| [33] | 谢依,李田文,莫小燕,等. 环状RNA的生物学功能及其在肿瘤发生中的作用[J]. 生物工程学报,2016, 32(11): 1507-1518. | 
																													
																						| [34] | Lasda E, Parker R. Circular RNAs: diversity of form and function[J]. RNA, 2014, 20(12): 1829-1842. | 
																													
																						| [35] | Chen B, Huang S. Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer[J]. Cancer Lett, 2018, 418: 41-45. | 
																													
																						| [36] | Yang C, Yuan W, Yang X, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression[J]. Mol Cancer, 2018, 17(1): 19. | 
																													
																						| [37] | 杨琪. 环状RNA AMOTL-1上调增强人乳腺癌细胞体内外恶性行为及其机制的研究[D]. 长春:吉林大学,2016. | 
																													
																						| [38] | 倪广惠,刘加美,赵正波,等. 灯盏乙素对乳腺癌细胞中环状RNA OXNAD1与SMARCA5的影响[J]. 云南中医学院学报,2017, 40(2): 24-26. | 
																													
																						| [39] | Lü L, Sun J, Shi P, et al. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer[J]. Oncotarget, 2017, 8(27): 44 096-44 107. | 
																													
																						| [40] | Yin WB, Yan MG, Fang X, et al. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection[J]. Clin Chim Acta, 2017, 487: 363-368. | 
																													
																						| [41] | Galasso M, Costantino G, Pasquali L, et al. Profiling of the predicted circular RNAs in ductal in situ and invasive breast cancer: a pilot study[J]. Int J Genomics,2016: 4 503 840. | 
																													
																						| [42] | Nair AA, Niu N, Tang X, et al. Circular RNAs and their associations with breast cancer subtypes[J]. Oncotarget, 2016,7(49): 80 967-80 979. | 
																													
																						| [43] | Chen B, Wei W, Huang X, et al. CircEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression[J]. Theranostics, 2018, 8(14): 4003-4015. | 
																													
																						| [44] | Tang YY, Zhao P, Zou TN, et al. Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143[J]. DNA Cell Biol, 2017, 36(11): 901-908. | 
																													
																						| [45] | Zhang CL, Wu H, Wang Y, et al. Expression patterns of circular RNAs from primary kinase transcripts in the mammary glands of lactating rats[J]. J Breast Cancer,2015,18(3): 235-241. | 
																													
																						| [46] | Liang HF, Zhang XZ, Liu BG, et al. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271[J]. Am J Cancer Res, 2017, 7(7): 1566-1576. | 
																													
																						| [47] | He R, Liu P, Xie X, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a[J]. J Exp Clin Cancer Res, 2017, 36(1): 145. | 
																													
																						| [48] | Yang W, Du WW, Li X, et al. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis[J]. Oncogene,2015,35(30): 3919-3931. | 
																													
																						| [49] | Yan N, Xu H, Zhang J, et al. Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells[J].Oncotarget, 2017, 8(56): 95 704-95 718. | 
																													
																						| [50] | Xu Y, Yao Y, Leng K, et al. Increased expression of circular RNA circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/ CBX8 signal pathway[J]. Cell Physiol Biochem,2018,51(4): 1710-1722. | 
																													
																						| [51] | Wang H, Xiao Y, Wu L, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis[J]. Int J Oncol, 2018, 52(2): 743-754. | 
																													
																						| [52] | Liu Y, Lu C, Zhou Y, et al. Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis[J]. Biochem Biophys Res Commun, 2018, 502(3): 358-363. | 
																													
																						| [53] | Zhang HD, Jiang LH, Hou JC, et al. Circular RNA hsa_circ_0052112 promotes cell migration and invasion by acting as sponge for miR-125a-5p in breast cancer[J]. Biomed Pharmacother, 2018, 107: 1342-1353. | 
																													
																						| [54] | Wang S, Li Q, Wang Y, et al. Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway[J]. Biochem Biophys Res Commun,2018,505(4): 996-1002. | 
																													
																						| [55] | Wu J, Jiang Z, Chen C, et al. CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis[J]. Cancer Lett, 2018,430: 179-192 | 
																													
																						| [56] | Zeng K, He B, Yang BB, et al. The pro-metastasis effect of circANKS1B in breast cancer[J]. Mol Cancer, 2018, 17(1) 160. | 
																													
																						| [57] | Zeng H, Wang J, Chen T, et al. Downregulation of long non-coding RNA Opa interacting protein 5-antisense RNA 1 inhibits breast cancer progression by targeting sex-determining region Y-box 2 by microRNA-129-5p upregulation[J]. Cancer Sci, 2019,110(1): 289-302. | 
																													
																						| [58] | Yang R, Xing L, Zheng X, et al. The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression[J]. Mol Cancer, 2019,18(1): 4. | 
																													
																						| [59] | Gao D, Zhang X, Liu B, et al. Screening circular RNA related to chemotherapeutic resistance in breast cancer[J]. Epigenomics, 2017, 9(9): 1175-1188. | 
																													
																						| [60] | Hsiao YC, Yeh MH, Chen YJ, et al. Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6[J]. Oncotarget, 2015, 6(35): 37 965-37 978. | 
																													
																						| [61] | Miao Y, Zheng W, Li N, et al. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway[J]. Sci Rep, 2017, 7: 41 942. | 
																													
																						| [62] | Wang DD, Li J, Sha HH, et al. miR-222 confers the resistance of breast cancer cells to Adriamycin through suppression of p27 kip1 expression[J]. Gene, 2016, 590(1): 44-50. | 
																													
																						| [63] | Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013,51(6): 792-806. | 
																													
																						| [64] | Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells[J]. Sci Rep,2015,5: 16 435. | 
																													
																						| [65] | Lu WY. Roles of the circular RNA circ-Foxo3 in breast cancer progression[J]. Cell Cycle,2017,16(7): 589-590. | 
																													
																						| [66] | Reddy SD, Ohshiro K, Rayala SK, et al. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions[J]. Cancer Res, 2008,68(20): 8195-8200. | 
																													
																						| [67] | Okuda H, Xing F, Pandey PR, et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4[J]. Cancer Res, 2013, 73(4): 1434-1444. | 
																													
																						| [68] | Liang G, Liu Z, Tan L, et al. HIF1α-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environmen[J]. Anticancer Res, 2017, 37(8): 4337-4343. | 
																													
																						| [69] | Yu Y, Zhao Y, Sun XH, et al. Down-regulation of miR-129-5p via the Twist1-Snail feedback loop stimulates the epithelial-mesenchymal transition and is associated with poor prognosis in breast cancer[J]. Oncotarget, 2015, 6(33): 34 423-34 436. |