切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (03) : 173 -179. doi: 10.3877/cma.j.issn.1674-0807.2020.03.009

所属专题: 文献

综述

环状RNAs在乳腺癌中的研究进展
李丽仙1, 何永鹏2, 陈霞3, 易琳2, 郑晓东4, 辇伟奇1,(), 伍青1   
  1. 1. 400030 重庆大学附属肿瘤医院Ⅰ期病房
    2. 400030 重庆大学附属肿瘤医院肿瘤精准医学研究中心
    3. 400030 重庆大学附属肿瘤医院临床研究中心
    4. 400030 重庆大学附属肿瘤医院乳腺中心
  • 收稿日期:2019-02-26 出版日期:2020-06-01
  • 通信作者: 辇伟奇
  • 基金资助:
    中央高校基本科研业务费资助项目(2019CDYGYB022); 重庆市科研院所绩效激励引导专项项目(cstc2017jxj1130006;cstc2018jxjl130057)

Research progress of circular RNAs in breast cancer

Lixian Li1, Yongpeng He2, Xia Chen3   

  • Received:2019-02-26 Published:2020-06-01
引用本文:

李丽仙, 何永鹏, 陈霞, 易琳, 郑晓东, 辇伟奇, 伍青. 环状RNAs在乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2020, 14(03): 173-179.

Lixian Li, Yongpeng He, Xia Chen. Research progress of circular RNAs in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2020, 14(03): 173-179.

环状RNAs(circRNAs)是一种新型的内源性非编码RNA及调控分子,广泛表达于各种生物体的真核转录组中。circRNAs特有的环状结构赋予其结构比线性RNA稳定、对核酸酶不敏感、保守性、组织表达特异性等性能,使其成为近年RNA领域研究的新热点。circRNAs与许多疾病,尤其是恶性肿瘤的发生、发展密切相关,并起着重要的调控作用,有望成为乳腺癌的新型生物学标志物和潜在的治疗靶点,可为肿瘤的诊断和靶向治疗提供新的思路。笔者对circRNAs的发展历程、产生机制、分类、生物学功能,及其在乳腺癌早期筛查、诊断和作用机制等的研究进展进行了全面综述,以期为乳腺癌的早期筛查、诊断、治疗及研究提供新的方向。

图1 环状RNAs发展历程中重要发现时间表[6,7,8,12,13,20,21,22,23,24,25,26,27,28,29]
表1 主要类型环状RNAs的特征[31]
表2 乳腺癌组织中的环状RNAs
年份 环状RNAs 调控 "海绵"作用靶标 功能 参考文献
2015 circRNA_1093 上调 miRNA-342-3p 致癌基因 [45]
2015 circ-Foxo3 下调 miRNA-22/ miRNA-136/ miRNA-138 肿瘤抑制因子 [48]
2016 circ-Amotl1 上调 c-myc基因、miRNA-4753、miRNA-6809 致癌基因 [37]
2016 hsa_circ_103110 上调 生物学标志物 [42]
2016 hsa_circ_104821 上调 生物学标志物 [42]
2016 hsa_circ_104689 上调 生物学标志物 [42]
2016 hsa_circ_006054 下调 生物学标志物 [42]
2016 hsa_circ_100219 下调 生物学标志物 [42]
2017 hsa_circ_0001982 上调 miRNA-143 致癌基因 [44]
2017 circGFRA1 上调 miRNA-34a 致癌基因/生物学标志物 [47]
2017 circ-ABCB10 上调 miRNA-1271 致癌基因 [46]
2017 circVRK1 下调 肿瘤抑制因子 [49]
2017 hsa_circ_0108942 上调 生物学标志物 [44]
2017 hsa_circ_0068033 下调 生物学标志物 [44]
2018 hsa_circ_0001785 上调 生物学标志物 [43]
2018 circ_0005230 上调 miRNA-618 致癌基因/生物学标志物 [50]
2018 circRNA-000911 上调 miRNA-449a 致癌基因 [51]
2018 hsa_circ_0008039 上调 miRNA-432-5p 致癌基因 [52]
2018 hsa_circ_0052112 上调 miRNA-125a-5p 致癌基因 [53]
2018 hsa_circ_0001846 上调 miRNA-661或MTA1 致癌基因 [54]
2018 circIRAK3 上调 miRNA-3607 致癌基因 [55]
2018 hsa_circ_0007294 上调 miRNA-148a-3p、miRNA-152-3p、转录因子USF1 致癌基因 [56]
2019 OIP5-AS1 上调 miRNA-129-5p 致癌基因 [57]
2019 circAGFG1 上调 miRNA-195-5p 致癌基因 [58]
[1]
Dong Y, He D, Peng Z, et al. Circular RNAs in cancer: an emerging key player[J]. J Hematol Oncol, 2017, 10: 2-10.
[2]
Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015, 444: 132-136.
[3]
Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker[J]. J Biotechnol, 2016, 238: 42-51.
[4]
魏开鹏,陈海莺,陈燕红,等. 三阴性乳腺癌中程序性死亡配体1的表达及其与PTEN基因的关系[J/CD]. 中华乳腺病杂志(电子版), 2018, 12(5): 294-298.
[5]
韩晓翠,左晓丽,李敏,等. 微RNA 221/222在乳腺癌中的研究进展[J/CD].中华乳腺病杂志(电子版), 2017, 11(6): 369-371.
[6]
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73(11): 3852-3856.
[7]
Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979, 280(5720): 339-340.
[8]
Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons[J]. Cell, 1991, 64(3): 607-613.
[9]
Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993, 7(1): 155-160.
[10]
You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity[J]. Nat Neurosci, 2015, 18(4): 603-610.
[11]
Ghosal S, Das S, Sen R, et al. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits[J]. Front Genet, 2013, 4: 283.
[12]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388.
[13]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338.
[14]
Li J, Yang J, Zhou P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015, 5(2): 472-480.
[15]
Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations[J]. Cell, 2016, 165(2): 289-302.
[16]
Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs[J]. Mol Cell, 2017, 66(1): 9-21.
[17]
Yang Y, Fan X, Mao M et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641.
[18]
Huang C, Liang D, Tatomer DC, et al. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J]. Gene Dev, 2018, 32(9/10): 639-644.
[19]
Qu S, Liu Z, Yang X, et al. The emerging functions and roles of circular RNAs in cancer[J]. Cancer Lett, 2018, 414: 301-309.
[20]
Kos A, Dijkema R, Arnberg AC, et al. The hepatitis delta (delta) virus possesses a circular RNA[J]. Nature,1986,323(6088): 558-560.
[21]
Harland R, Misher L. Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA[J]. Development, 1988, 102(4): 837-852.
[22]
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs[J]. Science, 1995, 268(5209): 415-417.
[23]
Dubin RA, Kazmi MA, Ostrer H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript[J]. Gene, 1995, 167(1/2): 245-248.
[24]
Perriman R, Ares M Jr. Circular mRNA can direct translation of extremely long repeating-sequence, proteins in vivo[J]. RNA, 1998, 4(9): 1047-1054
[25]
Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing[J]. Nucleic Acids Res, 2006, 34(8): e63.
[26]
Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk[J]. PLoS Genet, 2010, 6(12): e1001233.
[27]
Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012, 7(2): e30733.
[28]
Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134-147.
[29]
Piwecka M, Glažar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function[J]. Science,2017,357(6357): eaam8526.
[30]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157.
[31]
张进威,龙科任,王讯,等. 环状RNA研究进展[J]. 畜牧兽医学报,2016, 47(11): 2151-2158.
[32]
Zhang HD, Jiang LH, Sun DW, et al. CircRNA: a novel type of biomarker for cancer[J]. Breast Cancer, 2018, 25(1): 1-7.
[33]
谢依,李田文,莫小燕,等. 环状RNA的生物学功能及其在肿瘤发生中的作用[J]. 生物工程学报,2016, 32(11): 1507-1518.
[34]
Lasda E, Parker R. Circular RNAs: diversity of form and function[J]. RNA, 2014, 20(12): 1829-1842.
[35]
Chen B, Huang S. Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer[J]. Cancer Lett, 2018, 418: 41-45.
[36]
Yang C, Yuan W, Yang X, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression[J]. Mol Cancer, 2018, 17(1): 19.
[37]
杨琪. 环状RNA AMOTL-1上调增强人乳腺癌细胞体内外恶性行为及其机制的研究[D]. 长春:吉林大学,2016.
[38]
倪广惠,刘加美,赵正波,等. 灯盏乙素对乳腺癌细胞中环状RNA OXNAD1与SMARCA5的影响[J]. 云南中医学院学报,2017, 40(2): 24-26.
[39]
Lü L, Sun J, Shi P, et al. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer[J]. Oncotarget, 2017, 8(27): 44 096-44 107.
[40]
Yin WB, Yan MG, Fang X, et al. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection[J]. Clin Chim Acta, 2017, 487: 363-368.
[41]
Galasso M, Costantino G, Pasquali L, et al. Profiling of the predicted circular RNAs in ductal in situ and invasive breast cancer: a pilot study[J]. Int J Genomics,2016: 4 503 840.
[42]
Nair AA, Niu N, Tang X, et al. Circular RNAs and their associations with breast cancer subtypes[J]. Oncotarget, 2016,7(49): 80 967-80 979.
[43]
Chen B, Wei W, Huang X, et al. CircEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression[J]. Theranostics, 2018, 8(14): 4003-4015.
[44]
Tang YY, Zhao P, Zou TN, et al. Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143[J]. DNA Cell Biol, 2017, 36(11): 901-908.
[45]
Zhang CL, Wu H, Wang Y, et al. Expression patterns of circular RNAs from primary kinase transcripts in the mammary glands of lactating rats[J]. J Breast Cancer,2015,18(3): 235-241.
[46]
Liang HF, Zhang XZ, Liu BG, et al. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271[J]. Am J Cancer Res, 2017, 7(7): 1566-1576.
[47]
He R, Liu P, Xie X, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a[J]. J Exp Clin Cancer Res, 2017, 36(1): 145.
[48]
Yang W, Du WW, Li X, et al. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis[J]. Oncogene,2015,35(30): 3919-3931.
[49]
Yan N, Xu H, Zhang J, et al. Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells[J].Oncotarget, 2017, 8(56): 95 704-95 718.
[50]
Xu Y, Yao Y, Leng K, et al. Increased expression of circular RNA circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/ CBX8 signal pathway[J]. Cell Physiol Biochem,2018,51(4): 1710-1722.
[51]
Wang H, Xiao Y, Wu L, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis[J]. Int J Oncol, 2018, 52(2): 743-754.
[52]
Liu Y, Lu C, Zhou Y, et al. Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis[J]. Biochem Biophys Res Commun, 2018, 502(3): 358-363.
[53]
Zhang HD, Jiang LH, Hou JC, et al. Circular RNA hsa_circ_0052112 promotes cell migration and invasion by acting as sponge for miR-125a-5p in breast cancer[J]. Biomed Pharmacother, 2018, 107: 1342-1353.
[54]
Wang S, Li Q, Wang Y, et al. Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway[J]. Biochem Biophys Res Commun,2018,505(4): 996-1002.
[55]
Wu J, Jiang Z, Chen C, et al. CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis[J]. Cancer Lett, 2018,430: 179-192
[56]
Zeng K, He B, Yang BB, et al. The pro-metastasis effect of circANKS1B in breast cancer[J]. Mol Cancer, 2018, 17(1) 160.
[57]
Zeng H, Wang J, Chen T, et al. Downregulation of long non-coding RNA Opa interacting protein 5-antisense RNA 1 inhibits breast cancer progression by targeting sex-determining region Y-box 2 by microRNA-129-5p upregulation[J]. Cancer Sci, 2019,110(1): 289-302.
[58]
Yang R, Xing L, Zheng X, et al. The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression[J]. Mol Cancer, 2019,18(1): 4.
[59]
Gao D, Zhang X, Liu B, et al. Screening circular RNA related to chemotherapeutic resistance in breast cancer[J]. Epigenomics, 2017, 9(9): 1175-1188.
[60]
Hsiao YC, Yeh MH, Chen YJ, et al. Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6[J]. Oncotarget, 2015, 6(35): 37 965-37 978.
[61]
Miao Y, Zheng W, Li N, et al. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway[J]. Sci Rep, 2017, 7: 41 942.
[62]
Wang DD, Li J, Sha HH, et al. miR-222 confers the resistance of breast cancer cells to Adriamycin through suppression of p27 kip1 expression[J]. Gene, 2016, 590(1): 44-50.
[63]
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013,51(6): 792-806.
[64]
Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells[J]. Sci Rep,2015,5: 16 435.
[65]
Lu WY. Roles of the circular RNA circ-Foxo3 in breast cancer progression[J]. Cell Cycle,2017,16(7): 589-590.
[66]
Reddy SD, Ohshiro K, Rayala SK, et al. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions[J]. Cancer Res, 2008,68(20): 8195-8200.
[67]
Okuda H, Xing F, Pandey PR, et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4[J]. Cancer Res, 2013, 73(4): 1434-1444.
[68]
Liang G, Liu Z, Tan L, et al. HIF1α-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environmen[J]. Anticancer Res, 2017, 37(8): 4337-4343.
[69]
Yu Y, Zhao Y, Sun XH, et al. Down-regulation of miR-129-5p via the Twist1-Snail feedback loop stimulates the epithelial-mesenchymal transition and is associated with poor prognosis in breast cancer[J]. Oncotarget, 2015, 6(33): 34 423-34 436.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要