切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (03) : 173 -179. doi: 10.3877/cma.j.issn.1674-0807.2020.03.009

所属专题: 文献

综述

环状RNAs在乳腺癌中的研究进展
李丽仙1, 何永鹏2, 陈霞3, 易琳2, 郑晓东4, 辇伟奇1,(), 伍青1   
  1. 1. 400030 重庆大学附属肿瘤医院Ⅰ期病房
    2. 400030 重庆大学附属肿瘤医院肿瘤精准医学研究中心
    3. 400030 重庆大学附属肿瘤医院临床研究中心
    4. 400030 重庆大学附属肿瘤医院乳腺中心
  • 收稿日期:2019-02-26 出版日期:2020-06-01
  • 通信作者: 辇伟奇
  • 基金资助:
    中央高校基本科研业务费资助项目(2019CDYGYB022); 重庆市科研院所绩效激励引导专项项目(cstc2017jxj1130006;cstc2018jxjl130057)

Research progress of circular RNAs in breast cancer

Lixian Li1, Yongpeng He2, Xia Chen3   

  • Received:2019-02-26 Published:2020-06-01
引用本文:

李丽仙, 何永鹏, 陈霞, 易琳, 郑晓东, 辇伟奇, 伍青. 环状RNAs在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2020, 14(03): 173-179.

Lixian Li, Yongpeng He, Xia Chen. Research progress of circular RNAs in breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2020, 14(03): 173-179.

环状RNAs(circRNAs)是一种新型的内源性非编码RNA及调控分子,广泛表达于各种生物体的真核转录组中。circRNAs特有的环状结构赋予其结构比线性RNA稳定、对核酸酶不敏感、保守性、组织表达特异性等性能,使其成为近年RNA领域研究的新热点。circRNAs与许多疾病,尤其是恶性肿瘤的发生、发展密切相关,并起着重要的调控作用,有望成为乳腺癌的新型生物学标志物和潜在的治疗靶点,可为肿瘤的诊断和靶向治疗提供新的思路。笔者对circRNAs的发展历程、产生机制、分类、生物学功能,及其在乳腺癌早期筛查、诊断和作用机制等的研究进展进行了全面综述,以期为乳腺癌的早期筛查、诊断、治疗及研究提供新的方向。

图1 环状RNAs发展历程中重要发现时间表[6,7,8,12,13,20,21,22,23,24,25,26,27,28,29]
表1 主要类型环状RNAs的特征[31]
表2 乳腺癌组织中的环状RNAs
年份 环状RNAs 调控 "海绵"作用靶标 功能 参考文献
2015 circRNA_1093 上调 miRNA-342-3p 致癌基因 [45]
2015 circ-Foxo3 下调 miRNA-22/ miRNA-136/ miRNA-138 肿瘤抑制因子 [48]
2016 circ-Amotl1 上调 c-myc基因、miRNA-4753、miRNA-6809 致癌基因 [37]
2016 hsa_circ_103110 上调 生物学标志物 [42]
2016 hsa_circ_104821 上调 生物学标志物 [42]
2016 hsa_circ_104689 上调 生物学标志物 [42]
2016 hsa_circ_006054 下调 生物学标志物 [42]
2016 hsa_circ_100219 下调 生物学标志物 [42]
2017 hsa_circ_0001982 上调 miRNA-143 致癌基因 [44]
2017 circGFRA1 上调 miRNA-34a 致癌基因/生物学标志物 [47]
2017 circ-ABCB10 上调 miRNA-1271 致癌基因 [46]
2017 circVRK1 下调 肿瘤抑制因子 [49]
2017 hsa_circ_0108942 上调 生物学标志物 [44]
2017 hsa_circ_0068033 下调 生物学标志物 [44]
2018 hsa_circ_0001785 上调 生物学标志物 [43]
2018 circ_0005230 上调 miRNA-618 致癌基因/生物学标志物 [50]
2018 circRNA-000911 上调 miRNA-449a 致癌基因 [51]
2018 hsa_circ_0008039 上调 miRNA-432-5p 致癌基因 [52]
2018 hsa_circ_0052112 上调 miRNA-125a-5p 致癌基因 [53]
2018 hsa_circ_0001846 上调 miRNA-661或MTA1 致癌基因 [54]
2018 circIRAK3 上调 miRNA-3607 致癌基因 [55]
2018 hsa_circ_0007294 上调 miRNA-148a-3p、miRNA-152-3p、转录因子USF1 致癌基因 [56]
2019 OIP5-AS1 上调 miRNA-129-5p 致癌基因 [57]
2019 circAGFG1 上调 miRNA-195-5p 致癌基因 [58]
[1]
Dong Y, He D, Peng Z, et al. Circular RNAs in cancer: an emerging key player[J]. J Hematol Oncol, 2017, 10: 2-10.
[2]
Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015, 444: 132-136.
[3]
Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker[J]. J Biotechnol, 2016, 238: 42-51.
[4]
魏开鹏,陈海莺,陈燕红,等. 三阴性乳腺癌中程序性死亡配体1的表达及其与PTEN基因的关系[J/CD]. 中华乳腺病杂志(电子版), 2018, 12(5): 294-298.
[5]
韩晓翠,左晓丽,李敏,等. 微RNA 221/222在乳腺癌中的研究进展[J/CD].中华乳腺病杂志(电子版), 2017, 11(6): 369-371.
[6]
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73(11): 3852-3856.
[7]
Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979, 280(5720): 339-340.
[8]
Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons[J]. Cell, 1991, 64(3): 607-613.
[9]
Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993, 7(1): 155-160.
[10]
You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity[J]. Nat Neurosci, 2015, 18(4): 603-610.
[11]
Ghosal S, Das S, Sen R, et al. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits[J]. Front Genet, 2013, 4: 283.
[12]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388.
[13]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338.
[14]
Li J, Yang J, Zhou P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015, 5(2): 472-480.
[15]
Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations[J]. Cell, 2016, 165(2): 289-302.
[16]
Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs[J]. Mol Cell, 2017, 66(1): 9-21.
[17]
Yang Y, Fan X, Mao M et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine[J]. Cell Res, 2017, 27(5): 626-641.
[18]
Huang C, Liang D, Tatomer DC, et al. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs[J]. Gene Dev, 2018, 32(9/10): 639-644.
[19]
Qu S, Liu Z, Yang X, et al. The emerging functions and roles of circular RNAs in cancer[J]. Cancer Lett, 2018, 414: 301-309.
[20]
Kos A, Dijkema R, Arnberg AC, et al. The hepatitis delta (delta) virus possesses a circular RNA[J]. Nature,1986,323(6088): 558-560.
[21]
Harland R, Misher L. Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA[J]. Development, 1988, 102(4): 837-852.
[22]
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs[J]. Science, 1995, 268(5209): 415-417.
[23]
Dubin RA, Kazmi MA, Ostrer H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript[J]. Gene, 1995, 167(1/2): 245-248.
[24]
Perriman R, Ares M Jr. Circular mRNA can direct translation of extremely long repeating-sequence, proteins in vivo[J]. RNA, 1998, 4(9): 1047-1054
[25]
Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing[J]. Nucleic Acids Res, 2006, 34(8): e63.
[26]
Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk[J]. PLoS Genet, 2010, 6(12): e1001233.
[27]
Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012, 7(2): e30733.
[28]
Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134-147.
[29]
Piwecka M, Glažar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function[J]. Science,2017,357(6357): eaam8526.
[30]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157.
[31]
张进威,龙科任,王讯,等. 环状RNA研究进展[J]. 畜牧兽医学报,2016, 47(11): 2151-2158.
[32]
Zhang HD, Jiang LH, Sun DW, et al. CircRNA: a novel type of biomarker for cancer[J]. Breast Cancer, 2018, 25(1): 1-7.
[33]
谢依,李田文,莫小燕,等. 环状RNA的生物学功能及其在肿瘤发生中的作用[J]. 生物工程学报,2016, 32(11): 1507-1518.
[34]
Lasda E, Parker R. Circular RNAs: diversity of form and function[J]. RNA, 2014, 20(12): 1829-1842.
[35]
Chen B, Huang S. Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer[J]. Cancer Lett, 2018, 418: 41-45.
[36]
Yang C, Yuan W, Yang X, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression[J]. Mol Cancer, 2018, 17(1): 19.
[37]
杨琪. 环状RNA AMOTL-1上调增强人乳腺癌细胞体内外恶性行为及其机制的研究[D]. 长春:吉林大学,2016.
[38]
倪广惠,刘加美,赵正波,等. 灯盏乙素对乳腺癌细胞中环状RNA OXNAD1与SMARCA5的影响[J]. 云南中医学院学报,2017, 40(2): 24-26.
[39]
Lü L, Sun J, Shi P, et al. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer[J]. Oncotarget, 2017, 8(27): 44 096-44 107.
[40]
Yin WB, Yan MG, Fang X, et al. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection[J]. Clin Chim Acta, 2017, 487: 363-368.
[41]
Galasso M, Costantino G, Pasquali L, et al. Profiling of the predicted circular RNAs in ductal in situ and invasive breast cancer: a pilot study[J]. Int J Genomics,2016: 4 503 840.
[42]
Nair AA, Niu N, Tang X, et al. Circular RNAs and their associations with breast cancer subtypes[J]. Oncotarget, 2016,7(49): 80 967-80 979.
[43]
Chen B, Wei W, Huang X, et al. CircEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression[J]. Theranostics, 2018, 8(14): 4003-4015.
[44]
Tang YY, Zhao P, Zou TN, et al. Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143[J]. DNA Cell Biol, 2017, 36(11): 901-908.
[45]
Zhang CL, Wu H, Wang Y, et al. Expression patterns of circular RNAs from primary kinase transcripts in the mammary glands of lactating rats[J]. J Breast Cancer,2015,18(3): 235-241.
[46]
Liang HF, Zhang XZ, Liu BG, et al. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271[J]. Am J Cancer Res, 2017, 7(7): 1566-1576.
[47]
He R, Liu P, Xie X, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a[J]. J Exp Clin Cancer Res, 2017, 36(1): 145.
[48]
Yang W, Du WW, Li X, et al. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis[J]. Oncogene,2015,35(30): 3919-3931.
[49]
Yan N, Xu H, Zhang J, et al. Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells[J].Oncotarget, 2017, 8(56): 95 704-95 718.
[50]
Xu Y, Yao Y, Leng K, et al. Increased expression of circular RNA circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/ CBX8 signal pathway[J]. Cell Physiol Biochem,2018,51(4): 1710-1722.
[51]
Wang H, Xiao Y, Wu L, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis[J]. Int J Oncol, 2018, 52(2): 743-754.
[52]
Liu Y, Lu C, Zhou Y, et al. Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis[J]. Biochem Biophys Res Commun, 2018, 502(3): 358-363.
[53]
Zhang HD, Jiang LH, Hou JC, et al. Circular RNA hsa_circ_0052112 promotes cell migration and invasion by acting as sponge for miR-125a-5p in breast cancer[J]. Biomed Pharmacother, 2018, 107: 1342-1353.
[54]
Wang S, Li Q, Wang Y, et al. Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway[J]. Biochem Biophys Res Commun,2018,505(4): 996-1002.
[55]
Wu J, Jiang Z, Chen C, et al. CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis[J]. Cancer Lett, 2018,430: 179-192
[56]
Zeng K, He B, Yang BB, et al. The pro-metastasis effect of circANKS1B in breast cancer[J]. Mol Cancer, 2018, 17(1) 160.
[57]
Zeng H, Wang J, Chen T, et al. Downregulation of long non-coding RNA Opa interacting protein 5-antisense RNA 1 inhibits breast cancer progression by targeting sex-determining region Y-box 2 by microRNA-129-5p upregulation[J]. Cancer Sci, 2019,110(1): 289-302.
[58]
Yang R, Xing L, Zheng X, et al. The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression[J]. Mol Cancer, 2019,18(1): 4.
[59]
Gao D, Zhang X, Liu B, et al. Screening circular RNA related to chemotherapeutic resistance in breast cancer[J]. Epigenomics, 2017, 9(9): 1175-1188.
[60]
Hsiao YC, Yeh MH, Chen YJ, et al. Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6[J]. Oncotarget, 2015, 6(35): 37 965-37 978.
[61]
Miao Y, Zheng W, Li N, et al. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway[J]. Sci Rep, 2017, 7: 41 942.
[62]
Wang DD, Li J, Sha HH, et al. miR-222 confers the resistance of breast cancer cells to Adriamycin through suppression of p27 kip1 expression[J]. Gene, 2016, 590(1): 44-50.
[63]
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013,51(6): 792-806.
[64]
Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells[J]. Sci Rep,2015,5: 16 435.
[65]
Lu WY. Roles of the circular RNA circ-Foxo3 in breast cancer progression[J]. Cell Cycle,2017,16(7): 589-590.
[66]
Reddy SD, Ohshiro K, Rayala SK, et al. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions[J]. Cancer Res, 2008,68(20): 8195-8200.
[67]
Okuda H, Xing F, Pandey PR, et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4[J]. Cancer Res, 2013, 73(4): 1434-1444.
[68]
Liang G, Liu Z, Tan L, et al. HIF1α-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environmen[J]. Anticancer Res, 2017, 37(8): 4337-4343.
[69]
Yu Y, Zhao Y, Sun XH, et al. Down-regulation of miR-129-5p via the Twist1-Snail feedback loop stimulates the epithelial-mesenchymal transition and is associated with poor prognosis in breast cancer[J]. Oncotarget, 2015, 6(33): 34 423-34 436.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[14] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[15] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
阅读次数
全文


摘要