[1] |
郑荣寿,孙可欣,张思维,等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志,2019, 41(1): 19-28.
|
[2] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
|
[3] |
Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems[J]. J Pharm Pharmacol, 2013, 65(2): 157-170.
|
[4] |
Souza T, Silva T, Osorio F, et al. Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease[J]. JACC Cardiovasc Imaging, 2018, 11(8): 1045-1055.
|
[5] |
Rocca C, Pasqua T, Cerra MC, et al. Cardiac damage in anthracyclines therapy: Focus on oxidative stress and inflammation[J]. Antioxid Redox Signal, 2020, 32(15): 1081-1097.
|
[6] |
Ayer A, Macdonald P, Stocker R. CoQ10 function and role in heart failure and ischemic heart disease[J]. Annu Rev Nutr, 2015, 35: 175-213.
|
[7] |
Hanna AD, Lam A, Tham S, et al. Adverse effects of doxorubicin and its metabolic product on cardiac RyR2 and SERCA2A[J]. Mol Pharmacol, 2014, 86(4): 438-449.
|
[8] |
Fu HY, Sanada S, Matsuzaki T, et al. Chemical endoplasmic reticulum chaperone alleviates doxorubicin-induced cardiac dysfunction[J]. Circ Res, 2016, 118(5): 798-809.
|
[9] |
Al-Taee H, Azimullah S, Meeran MFN, et al. β-caryophyllene, a dietary phytocannabinoid attenuates oxidative stress, inflammation, apoptosis and prevents structural alterations of the myocardium against doxorubicin-induced acute cardiotoxicity in rats: An in vitro and in vivo study[J]. Eur J Pharmacol, 2019, 858: 172 467.
|
[10] |
Panjrath GS, Patel V, Valdiviezo CI, et al. Potentiation of doxorubicin cardiotoxicity by iron loading in a rodent model[J]. J Am Coll Cardiol, 2007, 49(25): 2457-2464.
|
[11] |
Ajoolabady A, Aghanejad A, Bi Y, et al. Enzyme-based autophagy in anti-neoplastic management: From molecular mechanisms to clinical therapeutics[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188 366.
|
[12] |
Li M, Sala V, De Santis MC, et al. Phosphoinositide 3-kinase gamma inhibition protects from anthracycline cardiotoxicity and reduces tumor growth[J]. Circulation, 2018, 138(7): 696-711.
|
[13] |
Zhao L, Qi Y, Xu L, et al. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2[J]. Redox Biol, 2017, 15: 284-296.
|
[14] |
Bloom MJ, Jarrett AM, Triplett TA, et al. Anti-her2 induced myeloid cell alterations correspond with increasing vascular maturation in a murine model of her2+ breast cancer[J]. BMC Cancer, 2020, 20(1): 359.
|
[15] |
Hassett MJ, Li H, Burstein HJ, et al. Neoadjuvant treatment strategies for HER2-positive breast cancer: cost-effectiveness and quality of life outcomes[J]. Breast Cancer Res Treat, 2020, 181(1): 43-51.
|
[16] |
Moilanen T, Jokimaki A, Tenhunen O, et al. Trastuzumab-induced cardiotoxicity and its risk factors in real-world setting of breast cancer patients[J]. J Cancer Res Clin Oncol, 2018, 144(8): 1613-1621.
|
[17] |
黄平,刘雅娟,陈占红,等.曲妥珠单抗治疗晚期乳腺癌患者的心脏毒性研究[J]. 中国临床药理学杂志,2017, 33(9): 778-781.
|
[18] |
Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer[J]. N Engl J Med, 2005, 353(16): 1659-1672.
|
[19] |
Aldiab A. Cardiotoxicity with adjuvant trastuzumab use in breast cancer: A single institution's experience[J]. J Saudi Heart Assoc, 2010, 22(3): 133-136.
|
[20] |
Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in her2-positive breast cancer[J]. N Engl J Med, 2011, 365(14): 1273-1283.
|
[21] |
徐颖,孙强,沈松杰,等.乳腺癌常用靶向治疗药物的心血管不良反应[J/CD]. 中华乳腺病杂志(电子版), 2018, 12(3): 182-186.
|
[22] |
Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition[J]. Nat Rev Cancer, 2007, 7(5): 332-344.
|
[23] |
Polk A, Shahmarvand N, Vistisen K, et al. Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity: A retrospective study of 452 consecutive patients with metastatic breast cancer[J]. BMJ Open, 2016, 6(10): e012798.
|
[24] |
Polk A, Vistisen K, Vaage-Nilsen M, et al. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity[J]. BMC Pharmacol Toxicol, 2014, 15: 47.
|
[25] |
Komolafe OA, Arayombo BE, Abiodun AA, et al. Immunohistochemical and histological evaluations of cyclophosphamide-induced acute cardiotoxicity in wistar rats: The role of turmeric extract (curcuma)[J]. Morphologie, 2020, 104(345): 133-142.
|
[26] |
侯广立,袁丽君,石瑞静,等.环磷酰胺心脏毒性小鼠模型的建立及其超声学评价[J]. 中华超声影像学杂志,2017, 26(11): 88-91.
|
[27] |
Mansour HH, El Kiki SM, Hasan HF. Protective effect of N-acetylcysteine on cyclophosphamide-induced cardiotoxicity in rats[J]. Environ Toxicol Pharmacol, 2015, 40(2): 417-422.
|
[28] |
Avci H, Epikmen ET, Ipek E, et al. Protective effects of silymarin and curcumin on cyclophosphamide-induced cardiotoxicity[J]. Exp Toxicol Pathol, 2017, 69(5): 317-327.
|
[29] |
Jyoti S, Tandon S. Disruption of mitochondrial membrane potential coupled with alterations in cardiac biomarker expression as early cardiotoxic signatures in human ES cell-derived cardiac cells[J]. Hum Exp Toxicol, 2019, 38(9): 1111-1124.
|
[30] |
Madeddu C, Deidda M, Piras A, et al. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy[J]. J Cardiovasc Med (Hagerstown), 2016, 17: e12-18.
|
[31] |
Magdy T, Burmeister BT, Burridge PW. Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: What is missing?[J]. Pharmacol Ther, 2016, 168: 113-125.
|
[32] |
Wilson CR, Sauer J, Hooser SB. Taxines: A review of the mechanism and toxicity of yew (Taxus spp.) alkaloids[J]. Toxicon, 2001, 39(2-3): 175-185.
|
[33] |
Pentassuglia L, Timolati F, Seifriz F, et al. Inhibition of ErbB2/neuregulin signaling augments paclitaxel-induced cardiotoxicity in adult ventricular myocytes[J]. Exp Cell Res, 2007, 313(8): 1588-1601.
|
[34] |
Lin H, Zuo S, Liu N. Research progress on the prevention and therapy for chemotherapy-related cardiotoxicity and cardiomyopathy[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2017, 45(11): 1001-1004.
|
[35] |
赵维鹏,程蕾蕾.超声心动图评估化疗药物致心脏毒性的现状及进展[J]. 中国医学影像学杂志,2013, 21(10): 787-790.
|
[36] |
Chu G, Versteeg HH, Verschoor AJ, et al. Atrial fibrillation and cancer - an unexplored field in cardiovascular oncology[J]. Blood Rev, 2019, 35: 59-67.
|
[37] |
Alexandre J, Moslehi JJ, Bersell KR, et al. Anticancer drug-induced cardiac rhythm disorders: Current knowledge and basic underlying mechanisms[J]. Pharmacol Ther, 2018, 189: 89-103.
|
[38] |
Wang D, Bakhai A, Arezina R, et al. Comparison of digital 12-lead ECG and digital 12-lead holter ECG recordings in healthy male subjects: Results from a randomized, double-blinded, placebo-controlled clinical trial[J]. Ann Noninvasive Electrocardiol, 2016, 21(6): 588-594.
|
[39] |
Veronese P, Hachul DT, Scanavacca MI, et al. Effects of anthracycline, cyclophosphamide and taxane chemotherapy on QTc measurements in patients with breast cancer[J]. PLoS One, 2018, 13(5): e0196763.
|
[40] |
Liu B, An T, Li M, et al. The association between early-onset cardiac events caused by neoadjuvant or adjuvant chemotherapy in triple-negative breast cancer patients and some novel autophagy-related polymorphisms in their genomic DNA: A real-world study[J]. Cancer Commun (Lond), 2018, 38(1): 71.
|
[41] |
刘鼎力. 超声心动图评价蒽环类药物的心脏毒性的临床意义[J]. 中国社区医师(医学专业), 2012, 14(33): 185-186.
|
[42] |
Zamorano JL, Lancellotti P, Rodriguez Muñoz D, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC) [J]. Eur Heart J, 2016, 37(36): 2768-2801.
|
[43] |
Toufan M, Pourafkari L, Ghahremani Nasab L, et al. Two-dimensional strain echocardiography for detection of cardiotoxicity in breast cancer patients undergoing chemotherapy[J]. J Cardiovasc Thorac Res, 2017, 9(1): 29-34.
|
[44] |
Santoro C, Arpino G, Esposito R, et al. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: A balance with feasibility[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(8): 930-936.
|
[45] |
Cheng KH, Handschumacher MD, Assuncao B, et al. Contraction timing patterns in patients treated for breast cancer before and after anthracyclines therapy[J]. J Am Soc Echocardiogr, 2017, 30(5): 454-460.
|
[46] |
Fallah-Rad N, Lytwyn M, Fang T, et al. Delayed contrast enhancement cardiac magnetic resonance imaging in trastuzumab induced cardiomyopathy[J]. J Cardiovasc Magn Reson, 2008, 10(1): 5.
|
[47] |
Barthur A, Brezden-Masley C, Connelly KA, et al. Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: A prospective observational study[J]. J Cardiovasc Magn Reson, 2017, 19(1): 44.
|
[48] |
Srikanthan K, Klug R, Tirona M, et al. Creating a biomarker panel for early detection of chemotherapy related cardiac dysfunction in breast cancer patients[J]. J Clin Exp Cardiolog, 2017, 8(3): 507.
|
[49] |
Shafi A, Siddiqui N, Imtiaz S, et al. Left ventricular systolic dysfunction predicted by early troponin I release after anthracycline based chemotherapy in breast cancer patients[J]. J Ayub Med Coll Abbottabad, 2017, 29(2): 266-269.
|
[50] |
Sawaya H, Sebag IA, Plana JC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab[J]. Circ Cardiovasc Imaging, 2012, 5(5): 596-603.
|
[51] |
Zardavas D, Suter TM, Van Veldhuisen DJ, et al. Role of troponins I and T and N-terminal prohormone of brain natriuretic peptide in monitoring cardiac safety of patients with early-stage human epidermal growth factor receptor 2-positive breast cancer receiving trastuzumab: A herceptin adjuvant study cardiac marker substudy[J]. J Clin Oncol, 2017, 35(8): 878-884.
|
[52] |
Finkelman BS, Putt M, Wang T, et al. Arginine-nitric oxide metabolites and cardiac dysfunction in patients with breast cancer[J]. J Am Coll Cardiol, 2017, 70(2): 152-162.
|
[53] |
Lee HS, Son CB, Shin SH, et al. Clinical correlation between brain natriutetic peptide and anthracyclin-induced cardiac toxicity[J]. Cancer Res Treat, 2008, 40(3): 121-126.
|
[54] |
Zidan A, Sherief LM, El-sheikh A, et al. NT-proBNP as early marker of subclinical late cardiotoxicity after doxorubicin therapy and mediastinal irradiation in childhood cancer survivors[J]. Dis Markers, 2015, 2015: 513 219.
|
[55] |
Putt M, Hahn VS, Januzzi JL, et al. Longitudinal changes in multiple biomarkers are associated with cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab[J]. Clin Chem, 2015, 61(9): 1164-1172.
|
[56] |
Ky B, Putt M, Sawaya H, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab[J]. J Am Coll Cardiol, 2014, 63(8): 809-816.
|
[57] |
齐宇新,刘姣,何颖娜,等.乳腺癌术后蒽环类化疗药物致心脏损害的早期监测分析[J]. 中国药房,2017, 28(17): 2356-2359.
|
[58] |
刘俊峰,苏菁,李朝喜,等.应变率成像技术监测化疗药物所致心脏毒性的研究[J]. 中国医学装备,2018, 15(5): 64-68.
|