[1] |
Siegel RL, Miller KD. Cancer statistics, 2019 [J]. CA Cancer J Clin, 2019, 69(1): 7-34.
|
[2] |
Iacoviello L, Bonaccio M, de Gaetano G, et al. Epidemiology of breast cancer, a paradigm of the " common soil" hypothesis [EB/OL]. [2020-03-02].
URL
|
[3] |
陈金东.中国各类癌症的发病率和死亡率现状及发展趋势[J].遵义医学院学报,2018,41(6):653-662.
|
[4] |
Barnett GC, Shah M, Redman K, et al. Risk factors for the incidence of breast cancer: do they affect survival from the disease? [J]. J Clin Oncol, 2008, 26(20): 3310-3316.
|
[5] |
Huynh J, Etemadi N, Hollande F, et al. The JAK/STAT3 axis: a comprehensive drug target for solid malignancies[J]. Semin Cancer Biol, 2017, 45: 13-22.
|
[6] |
Lapeire L, Hendrix A, Lambein K, et al. Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling[J]. Cancer Res, 2014, 74(23): 6806-6819.
|
[7] |
Niu Z, Shi Q, Zhang W, et al. Caspase-1 cleaves PPARgamma for potentiating the pro-tumor action of TAMs[J]. Nat Commun, 2017, 8(1): 766.
|
[8] |
Zhao Y, Li H, Zhang Y, et al. Oncoprotein HBXIP modulates abnormal lipid metabolism and growth of breast cancer cells by activating the LXRs/SREBP-1c/FAS signaling cascade[J]. Cancer Res, 2016, 76(16): 4696-4707.
|
[9] |
Casimiro MC, Di Sante G, Di Rocco A, et al. Cyclin D1 restrains oncogene-induced autophagy by regulating the AMPK-LKB1 signaling axis[J]. Cancer Res, 2017, 77(13): 3391-3405.
|
[10] |
Youngblood VM, Kim LC, Edwards DN, et al. The Ephrin-A1/EPHA2 signaling axis regulates glutamine metabolism in HER2-positive breast cancer[J]. Cancer Res, 2016, 76(7): 1825-1836.
|
[11] |
Navarro P, Bueno MJ, Zagorac I, et al. Targeting tumor mitochondrial metabolism overcomes resistance to antiangiogenics[J]. Cell Rep, 2016, 15(12): 2705-2718.
|
[12] |
Alajati A, Guccini I, Pinton S, et al. Interaction of CDCP1 with HER2 enhances HER2-driven tumorigenesis and promotes trastuzumab resistance in breast cancer[J]. Cell Rep, 2015, 11(4): 564-576.
|
[13] |
Wright HJ, Hou J, Xu B, et al. CDCP1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation[J]. Proc Natl Acad Sci U S A, 2017, 114(32): E6556-E6565.
|
[14] |
Wright HJ, Arulmoli J, Motazedi M, et al. CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer[J]. Oncogene, 2016, 35(36): 4762-4772.
|
[15] |
Steiner N, Borjan B, Hajek R, et al. Expression and release of glucose-regulated protein-78 (GRP78) in multiple myeloma[J]. Oncotarget, 2017, 8(34): 56 243-56 254.
|
[16] |
Lelliott C, Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation[J]. Int J Obes Relat Metab Disord, 2004, 28 Suppl 4: S22-S28.
|
[17] |
Pujari R, Jose J, Bhavnani V, et al. Tamoxifen-induced cytotoxicity in breast cancer cells is mediated by glucose-regulated protein 78 (GRP78) via AKT (Thr308) regulation[J]. Int J Biochem Cell Biol, 2016, 77(Pt A): 57-67.
|
[18] |
Slebe F, Rojo F, Vinaixa M, et al. FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth[J]. Nat Commun, 2016, 7: 11 199.
|
[19] |
Du T, Sikora MJ, Levine KM, et al. Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer[J]. Breast Cancer Res, 2018, 20(1): 106.
|
[20] |
Amiri M, Yousefnia S, Seyed Forootan F, et al. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers[J]. Gene, 2018, 676: 171-183.
|
[21] |
Shajahan-Haq AN, Boca SM, Jin L, et al. EGR1 regulates cellular metabolism and survival in endocrine resistant breast cancer[J]. Oncotarget, 2017, 8(57): 96 865-96 884.
|
[22] |
Sevinsky CJ, Khan F, Kokabee L, et al. NDRG1 regulates neutral lipid metabolism in breast cancer cells[J]. Breast Cancer Res,2018, 20(1): 55.
|
[23] |
Volmer R, Ron D. Lipid-dependent regulation of the unfolded protein response[J]. Curr Opin Cell Biol, 2015, 33: 67-73.
|
[24] |
Liu Y, Wang R, Zhang L, et al. The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway[J]. Oncol Lett, 2017, 13(6): 4685-4690.
|
[25] |
Gonzalez-Baro MR, Coleman RA. Mitochondrial acyltransferases and glycerophospholipid metabolism[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(1): 49-55.
|
[26] |
Lacunza E, Montanaro MA, Salvati A, et al. Small non-coding RNA landscape is modified by GPAT2 silencing in MDA-MB-231 cells[J]. Oncotarget, 2018, 9(46): 28 141-28 154.
|
[27] |
Wang J, Shidfar A, Ivancic D, et al. Overexpression of lipid metabolism genes and PBX1 in the contralateral breasts of women with estrogen receptor-negative breast cancer[J]. Int J Cancer, 2017, 140(11): 2484-2497.
|
[28] |
Camarda R, Zhou AY, Kohnz RA. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer[J]. Nat Med, 2016, 22(4): 427-32.
|
[29] |
Yuan H, Lu J, Xiao J, et al. PPARdelta induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation[J]. Cancer Res, 2013, 73(14): 4349-61.
|
[30] |
McGowan EM, Clarke CL. Effect of overexpression of progesterone receptor A on endogenous progestin-sensitive endpoints in breast cancer cells[J]. Mol Endocrinol, 1999,13(10):1657-1671.
|
[31] |
Kim S, Lee Y, Koo J S. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes[J]. PLoS One, 2015, 10(3): e0119473.
|
[32] |
Cai Y, Crowther J, Pastor T, et al. Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism[J]. Cancer Cell, 2016, 29(5): 751-766.
|
[33] |
Liu H, Liu Y, Zhang JT. A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction[J]. Mol Cancer Ther, 2008, 7(2): 263-270.
|
[34] |
Parra-Palau JL, Morancho B, Peg V, et al. Effect of p95HER2/611CTF on the response to trastuzumab and chemotherapy [EB/OL]. [2018-08-20].
URL
|
[35] |
Warmoes M, Jaspers JE, Xu G, et al. Proteomics of genetically engineered mouse mammary tumors identifies fatty acid metabolism members as potential predictive markers for cisplatin resistance[J]. Mol Cell Proteomics, 2013, 12(5): 1319-1334.
|
[36] |
魏金丽,邵志敏. 乳腺癌相关的脂肪细胞 [J/CD]. 中华乳腺病杂志(电子版), 2019, 13(6): 321-325.
|
[37] |
Cha YJ, Koo JS. Adipokines as therapeutic targets in breast cancer treatment[J]. Expert Opin Ther Targets, 2018, 22(11): 941-953.
|
[38] |
Xing H, Cao Y, Weng D, et al. Fibronectin-mediated activation of Akt2 protects human ovarian and breast cancer cells from docetaxel-induced apoptosis via inhibition of the p38 pathway[J]. Apoptosis, 2008, 13(2): 213-223.
|
[39] |
Bougaret L, Delort L, Billard H, et al. Adipocyte/breast cancer cell crosstalk in obesity interferes with the anti-proliferative efficacy of tamoxifen[J]. PLoS One, 2018, 13(2): e0191571.
|