切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (02) : 112 -115. doi: 10.3877/cma.j.issn.1674-0807.2020.02.010

所属专题: 文献

综述

脂代谢在乳腺癌发生、发展及耐药中的作用机制
陈叶飞1, 付笑影1,()   
  1. 1. 300193 天津中医药大学中西医结合学院病理教研室
  • 收稿日期:2018-08-28 出版日期:2020-04-01
  • 通信作者: 付笑影
  • 基金资助:
    国家自然科学基金资助项目(81300255)

Mechanism of lipid metabolism in the occurrence, development and drug resistance of breast cancer

Yefei Chen1, Xiaoying Fu1()   

  • Received:2018-08-28 Published:2020-04-01
  • Corresponding author: Xiaoying Fu
引用本文:

陈叶飞, 付笑影. 脂代谢在乳腺癌发生、发展及耐药中的作用机制[J]. 中华乳腺病杂志(电子版), 2020, 14(02): 112-115.

Yefei Chen, Xiaoying Fu. Mechanism of lipid metabolism in the occurrence, development and drug resistance of breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2020, 14(02): 112-115.

目前乳腺癌治疗方式众多,但主要以手术治疗为主,辅以放化疗。但放化疗及靶向药物治疗,均伴随着耐药现象的发生,且耐药机制尚不清楚。近年来,国内外研究表明脂代谢紊乱与乳腺癌的发生、发展及治疗耐药具有相关性,脂代谢相关的基因及蛋白在乳腺癌中的作用不断被发现,维持细胞中脂代谢水平稳定可抑制乳腺癌进展。笔者通过大量阅读国内外相关文献,对脂代谢在乳腺癌中的作用进行了总结,并提出是否可通过调控脂肪细胞、脂代谢途径来逆转乳腺癌耐药的设想,以期为临床试验、基础研究及新型靶向药物的开发提供新的思路。

[1]
Siegel RL, Miller KD. Cancer statistics, 2019 [J]. CA Cancer J Clin, 2019, 69(1): 7-34.
[2]
Iacoviello L, Bonaccio M, de Gaetano G, et al. Epidemiology of breast cancer, a paradigm of the " common soil" hypothesis [EB/OL]. [2020-03-02].

URL    
[3]
陈金东.中国各类癌症的发病率和死亡率现状及发展趋势[J].遵义医学院学报,2018,41(6):653-662.
[4]
Barnett GC, Shah M, Redman K, et al. Risk factors for the incidence of breast cancer: do they affect survival from the disease? [J]. J Clin Oncol, 2008, 26(20): 3310-3316.
[5]
Huynh J, Etemadi N, Hollande F, et al. The JAK/STAT3 axis: a comprehensive drug target for solid malignancies[J]. Semin Cancer Biol, 2017, 45: 13-22.
[6]
Lapeire L, Hendrix A, Lambein K, et al. Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling[J]. Cancer Res, 2014, 74(23): 6806-6819.
[7]
Niu Z, Shi Q, Zhang W, et al. Caspase-1 cleaves PPARgamma for potentiating the pro-tumor action of TAMs[J]. Nat Commun, 2017, 8(1): 766.
[8]
Zhao Y, Li H, Zhang Y, et al. Oncoprotein HBXIP modulates abnormal lipid metabolism and growth of breast cancer cells by activating the LXRs/SREBP-1c/FAS signaling cascade[J]. Cancer Res, 2016, 76(16): 4696-4707.
[9]
Casimiro MC, Di Sante G, Di Rocco A, et al. Cyclin D1 restrains oncogene-induced autophagy by regulating the AMPK-LKB1 signaling axis[J]. Cancer Res, 2017, 77(13): 3391-3405.
[10]
Youngblood VM, Kim LC, Edwards DN, et al. The Ephrin-A1/EPHA2 signaling axis regulates glutamine metabolism in HER2-positive breast cancer[J]. Cancer Res, 2016, 76(7): 1825-1836.
[11]
Navarro P, Bueno MJ, Zagorac I, et al. Targeting tumor mitochondrial metabolism overcomes resistance to antiangiogenics[J]. Cell Rep, 2016, 15(12): 2705-2718.
[12]
Alajati A, Guccini I, Pinton S, et al. Interaction of CDCP1 with HER2 enhances HER2-driven tumorigenesis and promotes trastuzumab resistance in breast cancer[J]. Cell Rep, 2015, 11(4): 564-576.
[13]
Wright HJ, Hou J, Xu B, et al. CDCP1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation[J]. Proc Natl Acad Sci U S A, 2017, 114(32): E6556-E6565.
[14]
Wright HJ, Arulmoli J, Motazedi M, et al. CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer[J]. Oncogene, 2016, 35(36): 4762-4772.
[15]
Steiner N, Borjan B, Hajek R, et al. Expression and release of glucose-regulated protein-78 (GRP78) in multiple myeloma[J]. Oncotarget, 2017, 8(34): 56 243-56 254.
[16]
Lelliott C, Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation[J]. Int J Obes Relat Metab Disord, 2004, 28 Suppl 4: S22-S28.
[17]
Pujari R, Jose J, Bhavnani V, et al. Tamoxifen-induced cytotoxicity in breast cancer cells is mediated by glucose-regulated protein 78 (GRP78) via AKT (Thr308) regulation[J]. Int J Biochem Cell Biol, 2016, 77(Pt A): 57-67.
[18]
Slebe F, Rojo F, Vinaixa M, et al. FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth[J]. Nat Commun, 2016, 7: 11 199.
[19]
Du T, Sikora MJ, Levine KM, et al. Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer[J]. Breast Cancer Res, 2018, 20(1): 106.
[20]
Amiri M, Yousefnia S, Seyed Forootan F, et al. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers[J]. Gene, 2018, 676: 171-183.
[21]
Shajahan-Haq AN, Boca SM, Jin L, et al. EGR1 regulates cellular metabolism and survival in endocrine resistant breast cancer[J]. Oncotarget, 2017, 8(57): 96 865-96 884.
[22]
Sevinsky CJ, Khan F, Kokabee L, et al. NDRG1 regulates neutral lipid metabolism in breast cancer cells[J]. Breast Cancer Res,2018, 20(1): 55.
[23]
Volmer R, Ron D. Lipid-dependent regulation of the unfolded protein response[J]. Curr Opin Cell Biol, 2015, 33: 67-73.
[24]
Liu Y, Wang R, Zhang L, et al. The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway[J]. Oncol Lett, 2017, 13(6): 4685-4690.
[25]
Gonzalez-Baro MR, Coleman RA. Mitochondrial acyltransferases and glycerophospholipid metabolism[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(1): 49-55.
[26]
Lacunza E, Montanaro MA, Salvati A, et al. Small non-coding RNA landscape is modified by GPAT2 silencing in MDA-MB-231 cells[J]. Oncotarget, 2018, 9(46): 28 141-28 154.
[27]
Wang J, Shidfar A, Ivancic D, et al. Overexpression of lipid metabolism genes and PBX1 in the contralateral breasts of women with estrogen receptor-negative breast cancer[J]. Int J Cancer, 2017, 140(11): 2484-2497.
[28]
Camarda R, Zhou AY, Kohnz RA. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer[J]. Nat Med, 2016, 22(4): 427-32.
[29]
Yuan H, Lu J, Xiao J, et al. PPARdelta induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation[J]. Cancer Res, 2013, 73(14): 4349-61.
[30]
McGowan EM, Clarke CL. Effect of overexpression of progesterone receptor A on endogenous progestin-sensitive endpoints in breast cancer cells[J]. Mol Endocrinol, 1999,13(10):1657-1671.
[31]
Kim S, Lee Y, Koo J S. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes[J]. PLoS One, 2015, 10(3): e0119473.
[32]
Cai Y, Crowther J, Pastor T, et al. Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism[J]. Cancer Cell, 2016, 29(5): 751-766.
[33]
Liu H, Liu Y, Zhang JT. A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction[J]. Mol Cancer Ther, 2008, 7(2): 263-270.
[34]
Parra-Palau JL, Morancho B, Peg V, et al. Effect of p95HER2/611CTF on the response to trastuzumab and chemotherapy [EB/OL]. [2018-08-20].

URL    
[35]
Warmoes M, Jaspers JE, Xu G, et al. Proteomics of genetically engineered mouse mammary tumors identifies fatty acid metabolism members as potential predictive markers for cisplatin resistance[J]. Mol Cell Proteomics, 2013, 12(5): 1319-1334.
[36]
魏金丽,邵志敏. 乳腺癌相关的脂肪细胞 [J/CD]. 中华乳腺病杂志(电子版), 2019, 13(6): 321-325.
[37]
Cha YJ, Koo JS. Adipokines as therapeutic targets in breast cancer treatment[J]. Expert Opin Ther Targets, 2018, 22(11): 941-953.
[38]
Xing H, Cao Y, Weng D, et al. Fibronectin-mediated activation of Akt2 protects human ovarian and breast cancer cells from docetaxel-induced apoptosis via inhibition of the p38 pathway[J]. Apoptosis, 2008, 13(2): 213-223.
[39]
Bougaret L, Delort L, Billard H, et al. Adipocyte/breast cancer cell crosstalk in obesity interferes with the anti-proliferative efficacy of tamoxifen[J]. PLoS One, 2018, 13(2): e0191571.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 刘佳璇, 徐兵河. 中国乳腺癌临床研究年度进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 259-265.
[13] 姚成才, 刘长春, 黄文剑, 陈明. 单孔非溶脂荧光腔镜技术在早期乳腺癌腋窝前哨淋巴结活组织检查中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 266-271.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要