切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2019, Vol. 13 ›› Issue (06) : 321 -325. doi: 10.3877/cma.j.issn.1674-0807.2019.06.001

所属专题: 文献

专题笔谈

乳腺癌相关的脂肪细胞
魏金丽1, 邵志敏1,()   
  1. 1. 200032 上海,复旦大学附属肿瘤医院乳腺外科 复旦大学上海医学院肿瘤学系
  • 收稿日期:2018-12-24 出版日期:2019-12-01
  • 通信作者: 邵志敏

Adipocytes associated with breast cancer

Jinli Wei1, Zhimin Shao1,()   

  1. 1. Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
  • Received:2018-12-24 Published:2019-12-01
  • Corresponding author: Zhimin Shao
  • About author:
    Corresponding author: Shao Zhimin, Email:
引用本文:

魏金丽, 邵志敏. 乳腺癌相关的脂肪细胞[J]. 中华乳腺病杂志(电子版), 2019, 13(06): 321-325.

Jinli Wei, Zhimin Shao. Adipocytes associated with breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2019, 13(06): 321-325.

脂肪组织是乳腺的重要组成部分。乳腺癌相关的脂肪细胞则是肿瘤发生、发展的积极参与者,为肿瘤细胞提供代谢底物,介导对治疗的抵抗。同时,肿瘤相关的脂肪细胞也受到来自于乳腺癌细胞的内分泌及旁分泌信号的影响,与巨噬细胞形成冠状结构,脂肪分解增强,释放游离脂肪酸,分泌包括瘦素、脂联素、IL-8等在内的各种脂肪素,重塑肿瘤细胞代谢过程,促进乳腺癌的发生、增殖、侵袭和转移。随着研究的深入,乳腺癌相关的脂肪细胞将成为精准治疗的一个重要靶点。

Adipose tissue is an important component of the breast. Breast cancer-associated adipocytes are active facilitators, not silent bystanders, in the development of cancer, providing metabolic substrates for tumor cells and mediating resistance to treatment. At the same time, cancer-associated adipocytes are also affected by endocrine and paracrine signals from breast cancer cells. They form the crown-like structure with macrophages, enhance lipolysis, release free fatty acids, and secret all kinds of adipocytokines, including leptin, adiponectin, interleukin-8, and so on. Through these mechanisms, cancer-associated adipocytes remodel the metabolic process, and promote the occurrence, proliferation, invasion and metastasis of breast cancer cells. With the deepening of research, cancer-associated adipocytes will become an important target for the precision treatment of breast cancer.

[1]
DeSantis CE, Ma J, Goding Sauer A, et al. Breast cancer statistics, 2017, racial disparity in mortality by state[J]. CA Cancer J Clin,2017, 67(6): 439-448.
[2]
Vandeweyer E, Hertens D. Quantification of glands and fat in breast tissue: an experimental determination[J]. Ann Anat,2002, 184(2): 181-184.
[3]
Ramsay DT, Kent JC, Hartmann RA, et al. Anatomy of the lactating human breast redefined with ultrasound imaging[J]. J Anat,2005, 206(6): 525-534.
[4]
Choi J, Cha YJ, Koo JS. Adipocyte biology in breast cancer: From silent bystander to active facilitator[J]. Prog Lipid Res,2018, 69: 11-20.
[5]
Hoy AJ, Balaban S, Saunders DN. Adipocyte-tumor cell metabolic crosstalk in breast cancer[J]. Trends Mol Med,2017, 23(5): 381-392.
[6]
Bertolini F, Lohsiriwat V, Petit JY, et al. Adipose tissue cells, lipotransfer and cancer: a challenge for scientists, oncologists and surgeons[J]. Biochim Biophys Acta,2012, 1826(1): 209-214.
[7]
Balaban S, Shearer RF, Lee LS, et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration[J]. Cancer Metab,2017, 5: 1.
[8]
Wolfson B, Eades G, Zhou Q. Adipocyte activation of cancer stem cell signaling in breast cancer[J]. World J Biol Chem,2015, 6(2): 39-47.
[9]
Dirat B, Bochet L, Dabek M, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion[J]. Cancer Res,2011, 71(7): 2455-2465.
[10]
Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans[J]. J Lipid Res,2005, 46(11): 2347-2355.
[11]
Iyengar NM, Morris PG, Zhou XK, et al. Menopause is a determinant of breast adipose inflammation[J]. Cancer Prev Res (Phila),2015, 8(5): 349-358.
[12]
Iyengar NM, Zhou XK, Gucalp A, et al. Systemic correlates of white adipose tissue inflammation in early-stage breast cancer[J]. Clin Cancer Res,2016, 22(9): 2283-2289.
[13]
Mullooly M, Yang HP, Falk RT, et al. Relationship between crown-like structures and sex-steroid hormones in breast adipose tissue and serum among postmenopausal breast cancer patients[J]. Breast Cancer Res,2017, 19(1): 8.
[14]
Cha YJ, Kim ES, Koo JS. Tumor-associated macrophages and crown-like structures in adipose tissue in breast cancer[J]. Breast Cancer Res Treat,2018, 170(1): 15-25.
[15]
Koru-Sengul T, Santander AM, Miao F, et al. Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crown-like structures associated with lower survival compared to non-black Latinas and Caucasians[J]. Breast Cancer Res Treat,2016, 158(1): 113-126.
[16]
Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders[J]. Nature,2017, 542(7640): 177-185.
[17]
Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, et al. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention[J]. CA Cancer J Clin,2017, 67(5): 378-397.
[18]
Iyengar NM, Gucalp A, Dannenberg AJ, et al. Obesity and cancer mechanisms: tumor microenvironment and inflammation[J]. J Clin Oncol,2016, 34(35): 4270-4276.
[19]
Fletcher SJ, Sacca PA, Pistone-Creydt M, et al. Human breast adipose tissue: characterization of factors that change during tumor progression in human breast cancer[J]. J Exp Clin Cancer Res,2017, 36(1): 26.
[20]
Fujisaki K, Fujimoto H, Sangai T, et al. Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1[J]. Breast Cancer Res Treat,2015, 150(2): 255-263.
[21]
Wang F, Gao S, Chen F, et al. Mammary fat of breast cancer: gene expression profiling and functional characterization[J]. PLoS One,2014, 9(10): e109742.
[22]
Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders[J]. Proteomics Clin Appl,2012, 6(1/2): 91-101.
[23]
Li J, Han X. Adipocytokines and breast cancer[J]. Curr Probl Cancer,2018, 42: 208-214.
[24]
Jardé T, Caldefie-Chézet F, Damez M, et al. Leptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma[J]. Oncol Rep,2008, 19(4): 905-911.
[25]
Al-Khalaf HH, Al-Harbi B, Al-Sayed A, et al. Interleukin-8 activates breast cancer-associated adipocytes and promotes their angiogenesis- and tumorigenesis-promoting effects [J]. Mol Cell Biol,2019,39(2): e00332-18.
[26]
Barone I, Giordano C, Bonofiglio D, et al. Leptin, obesity and breast cancer: progress to understanding the molecular connections[J]. Curr Opin Pharmacol,2016, 31: 83-89.
[27]
Schmidt S, Monk JM, Robinson LE, et al. The integrative role of leptin, oestrogen and the insulin family in obesity-associated breast cancer: potential effects of exercise[J]. Obes Rev,2015, 16(6): 473-487.
[28]
Ando S, Catalano S. The multifactorial role of leptin in driving the breast cancer microenvironment[J]. Nat Rev Endocrinol,2011, 8(5): 263-275.
[29]
Niu J, Jiang L, Guo W, et al. The association between leptin level and breast cancer: a meta-analysis[J]. PLoS One,2013, 8(6): e67349.
[30]
Miyoshi Y, Funahashi T, Tanaka S, et al. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels[J]. Int J Cancer,2006, 118(6): 1414-1419.
[31]
Fuentes-Mattei E, Velazquez-Torres G, Phan L, et al. Effects of obesity on transcriptomic changes and cancer hallmarks in estrogen receptor-positive breast cancer[J]. J Natl Cancer Inst,2014, 106(7): dju158.
[32]
Chang CC, Wu MJ, Yang JY, et al. Leptin-STAT3-G9a signaling promotes obesity-mediated breast cancer progression[J]. Cancer Res,2015, 75(11): 2375-2386.
[33]
Dietze EC, Chavez TA, Seewaldt VL. Obesity and triple-negative breast cancer: disparities, controversies, and biology[J]. Am J Pathol,2018, 188(2): 280-290.
[34]
Gunter MJ, Wang T, Cushman M, et al. Circulating adipokines and inflammatory markers and postmenopausal breast cancer risk[J]. J Natl Cancer Inst,2015, 107(9): djv169.
[35]
Grossmann ME, Nkhata KJ, Mizuno NK, et al. Effects of adiponectin on breast cancer cell growth and signaling[J]. Br J Cancer,2008, 98(2): 370-379.
[36]
Dieudonne MN, Bussiere M, Dos Santos E, et al. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells[J]. Biochem Biophys Res Commun,2006, 345(1): 271-279.
[37]
Chen X, Wang Y. Adiponectin and breast cancer[J]. Med Oncol,2011, 28(4): 1288-1295.
[38]
Falk Libby E, Liu J, Li YI, et al. Globular adiponectin enhances invasion in human breast cancer cells[J]. Oncol Lett,2016, 11(1): 633-641.
[39]
Taliaferro-Smith L, Nagalingam A, Knight BB, et al. Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis[J]. Neoplasia,2013, 15(1): 23-38.
[40]
Taliaferro-Smith L, Nagalingam A, Zhong D, et al. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells[J]. Oncogene,2009, 28(29): 2621-2633.
[41]
Nkhata KJ, Ray A, Schuster TF, et al. Effects of adiponectin and leptin co-treatment on human breast cancer cell growth[J]. Oncol Rep,2009, 21(6): 1611-1619.
[42]
Ollberding NJ, Kim Y, Shvetsov YB, et al. Prediagnostic leptin, adiponectin, C-reactive protein, and the risk of postmenopausal breast cancer[J]. Cancer Prev Res (Phila),2013, 6(3): 188-195.
[43]
Sultana R, Kataki AC, Borthakur BB, et al. Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India[J]. Gene,2017, 621: 51-58.
[44]
Benoy IH, Salgado R, Van Dam P, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival[J]. Clin Cancer Res,2004, 10(21): 7157-7162.
[45]
Liu Q, Li A, Tian Y, et al. The CXCL8-CXCR1/2 pathways in cancer[J]. Cytokine Growth Factor Rev,2016, 31: 61-71.
[46]
Zuccari DA, Leonel C, Castro R, et al. An immunohistochemical study of interleukin-8 (IL-8) in breast cancer[J]. Acta Histochem,2012, 114(6): 571-576.
[47]
Lin Y, Huang R, Chen L, et al. Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays[J]. Int J Cancer,2004, 109(4): 507-515.
[48]
Ginestier C, Liu S, Diebel ME, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts[J]. J Clin Invest,2010, 120(2): 485-497.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[13] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[14] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[15] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
阅读次数
全文


摘要