切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2019, Vol. 13 ›› Issue (04) : 245 -248. doi: 10.3877/cma.j.issn.1674-0807.2019.04.011

所属专题: 文献

综述

Notch和Wnt信号通路及两者的交叉串话与乳腺癌发生、发展的关系
陈伟玲1, 张永渠2, 李瑶琛3, 黄文河5, 张国君1,()   
  1. 1. 361102 福建,厦门大学附属翔安医院乳腺甲状腺外科;515041 汕头大学医学院长江学者实验室
    2. 汕头大学医学院附属肿瘤医院乳腺中心
    3. 汕头大学医学院附属肿瘤医院中心实验室
    4. 515041 汕头大学医学院长江学者实验室
    5. 361102 福建,厦门大学附属翔安医院乳腺甲状腺外科;汕头大学医学院附属肿瘤医院乳腺中心
  • 收稿日期:2017-03-06 出版日期:2019-08-01
  • 通信作者: 张国君
  • 基金资助:
    国家自然科学基金重大国际(地区)合作研究项目(81320108015)

Crosstalk between Notch and Wnt signaling pathways and relationship with occurrence and development of breast cancer

Weiling Chen1, Yongqu Zhang2, Yaochen Li3   

  • Received:2017-03-06 Published:2019-08-01
引用本文:

陈伟玲, 张永渠, 李瑶琛, 黄文河, 张国君. Notch和Wnt信号通路及两者的交叉串话与乳腺癌发生、发展的关系[J/OL]. 中华乳腺病杂志(电子版), 2019, 13(04): 245-248.

Weiling Chen, Yongqu Zhang, Yaochen Li. Crosstalk between Notch and Wnt signaling pathways and relationship with occurrence and development of breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2019, 13(04): 245-248.

乳腺癌是全球女性最常见的恶性肿瘤,而且是女性癌症死亡的最主要原因。对于乳腺癌的发病机制,目前尚不清楚。Notch和Wnt信号通路在多细胞生物的生长、发育及肿瘤形成中起着至关重要的作用,两者之间存在着直接或间接的串话。笔者就这2条信号通路在乳腺肿瘤的发生、发展过程中所表现出来的相互协同作用进行综述。

[1]
Pires-daSilva A, Sommer RJ. The evolution of signalling pathways in animal development[J]. Nat Rev Genet, 2003, 4(1):39-49.
[2]
Zhang Q, Lu C, Fang T, et al. Notch3 functions as a regulator of cell self-renewal by interacting with the beta-catenin pathway in hepatocellular carcinoma[J]. Oncotarget, 2015, 6(6):3669-3679.
[3]
Cui J, Li P, Liu X, et al. Abnormal expression of the Notch and Wnt/beta-catenin signaling pathways in stem-like ALDHhiCD44+ cells correlates highly with Ki-67 expression in breast cancer[J]. Oncol Lett, 2015, 9(4):1600-1606.
[4]
Han L, Diehl A, Nguyen NK, et al. The Notch pathway inhibits TGFbeta signaling in breast cancer through HEYL-mediated crosstalk[J]. Cancer Res, 2014, 74(22):6509-6518.
[5]
Li L, Zhao F, Lu J, et al. Notch-1 signaling promotes the malignant features of human breast cancer through NF-κB activation[J]. PLoS One, 2014, 9(4):e95912.
[6]
Xia J, Li Y, Yang Q, et al. Arsenic trioxide inhibits cell growth and induces apoptosis through inactivation of notch signaling pathway in breast cancer[J]. Int J Mol Sci, 2012, 13(8):9627-9641.
[7]
Bolos V, Mira E, Martinez-Poveda B, et al. Notch activation stimulates migration of breast cancer cells and promotes tumor growth[J]. Breast Cancer Res, 2013, 15(4):R54.
[8]
Xu J, Song F, Jin T, et al. Prognostic values of Notch receptors in breast cancer[J]. Tumour Biol, 2016, 37(2):1871-1877.
[9]
Orzechowska M, Jedroszka D, Bednarek AK. Common profiles of Notch signaling differentiate disease-free survival in luminal type A and triple negative breast cancer[J].Oncotarget, 2017, 8(4):6013-6032.
[10]
Bui QT, Im JH, Jeong SB, et al. Essential role of Notch4/STAT3 signaling in epithelial-mesenchymal transition of tamoxifen-resistant human breast cancer[J]. Cancer Lett, 2017, 390:115-125.
[11]
Lombardo Y, Faronato M, Filipovic A, et al. Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells[J]. Breast Cancer Res, 2014, 16(3):R62.
[12]
Sethi N, Dai X, Winter CG, et al. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells[J]. Cancer Cell, 2011, 19(2):192-205.
[13]
Ghiabi P, Jiang J, Pasquier J, et al. Endothelial cells provide a notch-dependent pro-tumoral niche for enhancing breast cancer survival, stemness and pro-metastatic properties[J]. PLoS One, 2014, 9(11):e112424.
[14]
Sizemore GM, Balakrishnan S, Hammer AM, et al. Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1[J]. Oncogene, 2017, 36(16): 2297-2308.
[15]
D’Angelo RC, Ouzounova M, Davis A, et al. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity[J]. Mol Cancer Ther, 2015, 14(3):779-787.
[16]
Zhao D, Mo Y, Li MT, et al. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells[J]. J Clin Invest, 2014, 124(12):5453-5465.
[17]
Boyle ST, Gieniec KA, Gregor CE, et al. Interplay between CCR7 and Notch 1 axes promotes stemness in MMTV-PyMT mammary cancer cells[J]. Mol Cancer, 2017, 16(1):19.
[18]
Peng GL, Tian Y, Lu C, et al. Effects of Notch-1 down-regulation on malignant behaviors of breast cancer stem cells[J]. J Huazhong Univ Sci Technolog Med Sci, 2014, 34(2):195-200.
[19]
Fu YP, Edvardsen H, Kaushiva A, et al. NOTCH2 in breast cancer: association of SNP rs11249433 with gene expression in ER-positive breast tumors without TP53 mutations[J]. Mol Cancer, 2010, 9:113.
[20]
Lafkas D, Rodilla V, Huyghe M, et al. Notch3 marks clonogenic mammary luminal progenitor cells in vivo[J]. J Cell Biol, 2013, 203(1):47-56.
[21]
Harrison H, Farnie G, Howell SJ, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor[J]. Cancer Res, 2010, 70(2):709-718.
[22]
Bleckmann A, Conradi LC, Menck K, et al. β-catenin-independent WNT signaling and Ki67 in contrast to the estrogen receptor status are prognostic and associated with poor prognosis in breast cancer liver metastases [J]. Clin Exp Metastasis, 2016, 33(4):309-323.
[23]
Xu J, Prosperi JR, Choudhury N, et al. β-catenin is required for the tumorigenic behavior of triple-negative breast cancer cells [J]. PLoS One, 2015, 10(2):e0117097.
[24]
Aristizabal-Pachon AF, Carvalho TI, Carrara HH, et al. AXIN2 polymorphisms, the β-catenin destruction complex expression profile and breast cancer susceptibility [J]. Asian Pac J Cancer Prev, 2015, 16(16):7277-7284.
[25]
Xu WH, Liu ZB, Yang C, et al. Expression of dickkopf-1 and beta-catenin related to the prognosis of breast cancer patients with triple negative phenotype[J]. PLoS One, 2012, 7(5):e37624.
[26]
Liu JT, Guo WB, Sun JY. Serum Dickkopf-1 acts as a new biomarker in human breast cancer [J]. Minerva Med, 2017, 108(4):334-340.
[27]
Klauzinska M, Baljinnyam B, Raafat A, et al. Rspo2/Int7 regulates invasiveness and tumorigenic properties of mammary epithelial cells[J]. J Cell Physiol, 2012, 227(5):1960-1971.
[28]
Ma J, Lu W, Chen D, et al. Role of Wnt co-receptor LRP6 in triple negative breast cancer cell migration and invasion [J]. J Cell Biochem,2017, 118(9):2968-2976.
[29]
Corda G, Sala G, Lattanzio R, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer[J]. J Pathol, 2017, 241(3):350-361.
[30]
Loh YN, Hedditch EL, Baker LA, et al. The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer[J]. BMC cancer, 2013, 13:174.
[31]
Zou YF, Xie CW, Yang SX, et al. AMPK activators suppress breast cancer cell growth by inhibiting DVL3-facilitated Wnt/β-catenin signaling pathway activity [J].Mol Med Rep, 2017, 15(2):899-907.
[32]
Yin X, Xiang T, Li L, et al. DACT1, an antagonist to Wnt/beta-catenin signaling, suppresses tumor cell growth and is frequently silenced in breast cancer[J]. Breast Cancer Res, 2013, 15(2):R23.
[33]
Elsarraj HS, Hong Y, Valdez KE, et al. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion[J]. Breast Cancer Res, 2015, 17:128.
[34]
Lamb R, Ablett MP, Spence K, et al. Wnt pathway activity in breast cancer sub-types and stem-like cells[J]. PLoS One, 2013, 8(7):e67811.
[35]
Wang H, McKnight NC, Zhang T, et al. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells[J]. Cancer Res, 2007, 67(2):528-536.
[36]
Wang H, He L, Ma F, et al. SOX9 regulates low density lipoprotein receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4) expression and Wnt/beta-catenin activation in breast cancer[J]. J Biol Chem, 2013, 288(9):6478-6487.
[37]
Chakrabarti R, Wei Y, Hwang J, et al. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling[J]. Nat Cell Biol, 2014, 16(10):1004-1013.
[38]
Memmi EM, Sanarico AG, Giacobbe A, et al. p63 Sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling[J]. Proc Natl Acad Sci U S A, 2015, 112(11):3499-3504.
[39]
Xu L, Zhang L, Hu C, et al. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells[J]. Int J Oncol, 2016, 48(3):1175-1186.
[40]
Jin YH, Kim H, Ki H, et al. Beta-catenin modulates the level and transcriptional activity of Notch 1/NICD through its direct interaction[J]. Biochim Biophys Acta, 2009, 1793(2):290-299.
[41]
Yamamizu K, Matsunaga T, Uosaki H, et al. Convergence of Notch and beta-catenin signaling induces arterial fate in vascular progenitors[J]. J Cell Biol, 2010, 189(2):325-338.
[42]
Wesley CS. Notch and wingless regulate expression of cuticle patterning genes[J]. Mol Cell Biol, 1999, 19(8):5743-5758.
[43]
Galceran J, Sustmann C, Hsu SC, et al. LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis[J]. Genes Dev, 2004, 18(22):2718-2723.
[44]
Collu GM, Hidalgo-Sastre A, Acar A, et al. Dishevelled limits Notch signalling through inhibition of CSL[J]. Development, 2012, 139(23):4405-4415.
[45]
Hansson EM, Lendahl U, Chapman G. Notch signaling in development and disease[J]. Semin Cancer Biol, 2004, 14(5):320-328.
[46]
Foltz DR, Santiago MC, Berechid BE, et al. Glycogen synthase kinase-3beta modulates notch signaling and stability[J]. Curr Biol, 2002, 12(12):1006-1011.
[47]
Espinosa L, Ingles-Esteve J, Aguilera C, et al. Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways[J]. J Biol Chem, 2003, 278(34):32 227-32 235.
[48]
Zhou J, Cheng P, Youn JI, et al. Notch and wingless signaling cooperate in regulation of dendritic cell differentiation[J]. Immunity, 2009, 30(6):845-859.
[49]
Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer[J]. Biochim Biophys Acta, 2011, 1815(2):197-213.
[50]
Ayyanan A, Civenni G, Ciarloni L, et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism[J]. Proc Natl Acad Sci U S A, 2006, 103(10):3799-3804.
[51]
Roarty K, Rosen JM. Pygopus 2: tilting the Wnt-Notch balance in mammary epithelial lineage determination[J]. Breast Cancer Res, 2013, 15(6):322.
[52]
Rangel MC, Bertolette D, Castro NP, et al. Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer[J]. Breast Cancer Res Treat, 2016, 156(2):211-226.
[53]
Azad AK, Lawen A, Keith JM. Prediction of signaling cross-talks contributing to acquired drug resistance in breast cancer cells by Bayesian statistical modeling [J]. BMC Syst Biol, 2015, 9:2.
[54]
Yamaguchi T, Mukai H, Yamashita S, et al. Comprehensive DNA methylation and extensive mutation analyses of HER2-positive breast cancer[J]. Oncology, 2015, 88(6):377-384.
[55]
Majumder M, Xin X, Liu L, et al. COX-2 induces breast cancer stem cells via EP4/PI3K/AKT/NOTCH/WNT axis [J]. Stem Cells, 2016, 34(9):2290-2305.
[56]
Munoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming[J]. Mol Oncol, 2012, 6(6):620-636.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要