切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2019, Vol. 13 ›› Issue (04) : 245 -248. doi: 10.3877/cma.j.issn.1674-0807.2019.04.011

所属专题: 文献

综述

Notch和Wnt信号通路及两者的交叉串话与乳腺癌发生、发展的关系
陈伟玲1, 张永渠2, 李瑶琛3, 黄文河5, 张国君1,()   
  1. 1. 361102 福建,厦门大学附属翔安医院乳腺甲状腺外科;515041 汕头大学医学院长江学者实验室
    2. 汕头大学医学院附属肿瘤医院乳腺中心
    3. 汕头大学医学院附属肿瘤医院中心实验室
    4. 515041 汕头大学医学院长江学者实验室
    5. 361102 福建,厦门大学附属翔安医院乳腺甲状腺外科;汕头大学医学院附属肿瘤医院乳腺中心
  • 收稿日期:2017-03-06 出版日期:2019-08-01
  • 通信作者: 张国君
  • 基金资助:
    国家自然科学基金重大国际(地区)合作研究项目(81320108015)

Crosstalk between Notch and Wnt signaling pathways and relationship with occurrence and development of breast cancer

Weiling Chen1, Yongqu Zhang2, Yaochen Li3   

  • Received:2017-03-06 Published:2019-08-01
引用本文:

陈伟玲, 张永渠, 李瑶琛, 黄文河, 张国君. Notch和Wnt信号通路及两者的交叉串话与乳腺癌发生、发展的关系[J]. 中华乳腺病杂志(电子版), 2019, 13(04): 245-248.

Weiling Chen, Yongqu Zhang, Yaochen Li. Crosstalk between Notch and Wnt signaling pathways and relationship with occurrence and development of breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2019, 13(04): 245-248.

乳腺癌是全球女性最常见的恶性肿瘤,而且是女性癌症死亡的最主要原因。对于乳腺癌的发病机制,目前尚不清楚。Notch和Wnt信号通路在多细胞生物的生长、发育及肿瘤形成中起着至关重要的作用,两者之间存在着直接或间接的串话。笔者就这2条信号通路在乳腺肿瘤的发生、发展过程中所表现出来的相互协同作用进行综述。

[1]
Pires-daSilva A, Sommer RJ. The evolution of signalling pathways in animal development[J]. Nat Rev Genet, 2003, 4(1):39-49.
[2]
Zhang Q, Lu C, Fang T, et al. Notch3 functions as a regulator of cell self-renewal by interacting with the beta-catenin pathway in hepatocellular carcinoma[J]. Oncotarget, 2015, 6(6):3669-3679.
[3]
Cui J, Li P, Liu X, et al. Abnormal expression of the Notch and Wnt/beta-catenin signaling pathways in stem-like ALDHhiCD44+ cells correlates highly with Ki-67 expression in breast cancer[J]. Oncol Lett, 2015, 9(4):1600-1606.
[4]
Han L, Diehl A, Nguyen NK, et al. The Notch pathway inhibits TGFbeta signaling in breast cancer through HEYL-mediated crosstalk[J]. Cancer Res, 2014, 74(22):6509-6518.
[5]
Li L, Zhao F, Lu J, et al. Notch-1 signaling promotes the malignant features of human breast cancer through NF-κB activation[J]. PLoS One, 2014, 9(4):e95912.
[6]
Xia J, Li Y, Yang Q, et al. Arsenic trioxide inhibits cell growth and induces apoptosis through inactivation of notch signaling pathway in breast cancer[J]. Int J Mol Sci, 2012, 13(8):9627-9641.
[7]
Bolos V, Mira E, Martinez-Poveda B, et al. Notch activation stimulates migration of breast cancer cells and promotes tumor growth[J]. Breast Cancer Res, 2013, 15(4):R54.
[8]
Xu J, Song F, Jin T, et al. Prognostic values of Notch receptors in breast cancer[J]. Tumour Biol, 2016, 37(2):1871-1877.
[9]
Orzechowska M, Jedroszka D, Bednarek AK. Common profiles of Notch signaling differentiate disease-free survival in luminal type A and triple negative breast cancer[J].Oncotarget, 2017, 8(4):6013-6032.
[10]
Bui QT, Im JH, Jeong SB, et al. Essential role of Notch4/STAT3 signaling in epithelial-mesenchymal transition of tamoxifen-resistant human breast cancer[J]. Cancer Lett, 2017, 390:115-125.
[11]
Lombardo Y, Faronato M, Filipovic A, et al. Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells[J]. Breast Cancer Res, 2014, 16(3):R62.
[12]
Sethi N, Dai X, Winter CG, et al. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells[J]. Cancer Cell, 2011, 19(2):192-205.
[13]
Ghiabi P, Jiang J, Pasquier J, et al. Endothelial cells provide a notch-dependent pro-tumoral niche for enhancing breast cancer survival, stemness and pro-metastatic properties[J]. PLoS One, 2014, 9(11):e112424.
[14]
Sizemore GM, Balakrishnan S, Hammer AM, et al. Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1[J]. Oncogene, 2017, 36(16): 2297-2308.
[15]
D’Angelo RC, Ouzounova M, Davis A, et al. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity[J]. Mol Cancer Ther, 2015, 14(3):779-787.
[16]
Zhao D, Mo Y, Li MT, et al. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells[J]. J Clin Invest, 2014, 124(12):5453-5465.
[17]
Boyle ST, Gieniec KA, Gregor CE, et al. Interplay between CCR7 and Notch 1 axes promotes stemness in MMTV-PyMT mammary cancer cells[J]. Mol Cancer, 2017, 16(1):19.
[18]
Peng GL, Tian Y, Lu C, et al. Effects of Notch-1 down-regulation on malignant behaviors of breast cancer stem cells[J]. J Huazhong Univ Sci Technolog Med Sci, 2014, 34(2):195-200.
[19]
Fu YP, Edvardsen H, Kaushiva A, et al. NOTCH2 in breast cancer: association of SNP rs11249433 with gene expression in ER-positive breast tumors without TP53 mutations[J]. Mol Cancer, 2010, 9:113.
[20]
Lafkas D, Rodilla V, Huyghe M, et al. Notch3 marks clonogenic mammary luminal progenitor cells in vivo[J]. J Cell Biol, 2013, 203(1):47-56.
[21]
Harrison H, Farnie G, Howell SJ, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor[J]. Cancer Res, 2010, 70(2):709-718.
[22]
Bleckmann A, Conradi LC, Menck K, et al. β-catenin-independent WNT signaling and Ki67 in contrast to the estrogen receptor status are prognostic and associated with poor prognosis in breast cancer liver metastases [J]. Clin Exp Metastasis, 2016, 33(4):309-323.
[23]
Xu J, Prosperi JR, Choudhury N, et al. β-catenin is required for the tumorigenic behavior of triple-negative breast cancer cells [J]. PLoS One, 2015, 10(2):e0117097.
[24]
Aristizabal-Pachon AF, Carvalho TI, Carrara HH, et al. AXIN2 polymorphisms, the β-catenin destruction complex expression profile and breast cancer susceptibility [J]. Asian Pac J Cancer Prev, 2015, 16(16):7277-7284.
[25]
Xu WH, Liu ZB, Yang C, et al. Expression of dickkopf-1 and beta-catenin related to the prognosis of breast cancer patients with triple negative phenotype[J]. PLoS One, 2012, 7(5):e37624.
[26]
Liu JT, Guo WB, Sun JY. Serum Dickkopf-1 acts as a new biomarker in human breast cancer [J]. Minerva Med, 2017, 108(4):334-340.
[27]
Klauzinska M, Baljinnyam B, Raafat A, et al. Rspo2/Int7 regulates invasiveness and tumorigenic properties of mammary epithelial cells[J]. J Cell Physiol, 2012, 227(5):1960-1971.
[28]
Ma J, Lu W, Chen D, et al. Role of Wnt co-receptor LRP6 in triple negative breast cancer cell migration and invasion [J]. J Cell Biochem,2017, 118(9):2968-2976.
[29]
Corda G, Sala G, Lattanzio R, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer[J]. J Pathol, 2017, 241(3):350-361.
[30]
Loh YN, Hedditch EL, Baker LA, et al. The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer[J]. BMC cancer, 2013, 13:174.
[31]
Zou YF, Xie CW, Yang SX, et al. AMPK activators suppress breast cancer cell growth by inhibiting DVL3-facilitated Wnt/β-catenin signaling pathway activity [J].Mol Med Rep, 2017, 15(2):899-907.
[32]
Yin X, Xiang T, Li L, et al. DACT1, an antagonist to Wnt/beta-catenin signaling, suppresses tumor cell growth and is frequently silenced in breast cancer[J]. Breast Cancer Res, 2013, 15(2):R23.
[33]
Elsarraj HS, Hong Y, Valdez KE, et al. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion[J]. Breast Cancer Res, 2015, 17:128.
[34]
Lamb R, Ablett MP, Spence K, et al. Wnt pathway activity in breast cancer sub-types and stem-like cells[J]. PLoS One, 2013, 8(7):e67811.
[35]
Wang H, McKnight NC, Zhang T, et al. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells[J]. Cancer Res, 2007, 67(2):528-536.
[36]
Wang H, He L, Ma F, et al. SOX9 regulates low density lipoprotein receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4) expression and Wnt/beta-catenin activation in breast cancer[J]. J Biol Chem, 2013, 288(9):6478-6487.
[37]
Chakrabarti R, Wei Y, Hwang J, et al. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling[J]. Nat Cell Biol, 2014, 16(10):1004-1013.
[38]
Memmi EM, Sanarico AG, Giacobbe A, et al. p63 Sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling[J]. Proc Natl Acad Sci U S A, 2015, 112(11):3499-3504.
[39]
Xu L, Zhang L, Hu C, et al. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells[J]. Int J Oncol, 2016, 48(3):1175-1186.
[40]
Jin YH, Kim H, Ki H, et al. Beta-catenin modulates the level and transcriptional activity of Notch 1/NICD through its direct interaction[J]. Biochim Biophys Acta, 2009, 1793(2):290-299.
[41]
Yamamizu K, Matsunaga T, Uosaki H, et al. Convergence of Notch and beta-catenin signaling induces arterial fate in vascular progenitors[J]. J Cell Biol, 2010, 189(2):325-338.
[42]
Wesley CS. Notch and wingless regulate expression of cuticle patterning genes[J]. Mol Cell Biol, 1999, 19(8):5743-5758.
[43]
Galceran J, Sustmann C, Hsu SC, et al. LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis[J]. Genes Dev, 2004, 18(22):2718-2723.
[44]
Collu GM, Hidalgo-Sastre A, Acar A, et al. Dishevelled limits Notch signalling through inhibition of CSL[J]. Development, 2012, 139(23):4405-4415.
[45]
Hansson EM, Lendahl U, Chapman G. Notch signaling in development and disease[J]. Semin Cancer Biol, 2004, 14(5):320-328.
[46]
Foltz DR, Santiago MC, Berechid BE, et al. Glycogen synthase kinase-3beta modulates notch signaling and stability[J]. Curr Biol, 2002, 12(12):1006-1011.
[47]
Espinosa L, Ingles-Esteve J, Aguilera C, et al. Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways[J]. J Biol Chem, 2003, 278(34):32 227-32 235.
[48]
Zhou J, Cheng P, Youn JI, et al. Notch and wingless signaling cooperate in regulation of dendritic cell differentiation[J]. Immunity, 2009, 30(6):845-859.
[49]
Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer[J]. Biochim Biophys Acta, 2011, 1815(2):197-213.
[50]
Ayyanan A, Civenni G, Ciarloni L, et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism[J]. Proc Natl Acad Sci U S A, 2006, 103(10):3799-3804.
[51]
Roarty K, Rosen JM. Pygopus 2: tilting the Wnt-Notch balance in mammary epithelial lineage determination[J]. Breast Cancer Res, 2013, 15(6):322.
[52]
Rangel MC, Bertolette D, Castro NP, et al. Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer[J]. Breast Cancer Res Treat, 2016, 156(2):211-226.
[53]
Azad AK, Lawen A, Keith JM. Prediction of signaling cross-talks contributing to acquired drug resistance in breast cancer cells by Bayesian statistical modeling [J]. BMC Syst Biol, 2015, 9:2.
[54]
Yamaguchi T, Mukai H, Yamashita S, et al. Comprehensive DNA methylation and extensive mutation analyses of HER2-positive breast cancer[J]. Oncology, 2015, 88(6):377-384.
[55]
Majumder M, Xin X, Liu L, et al. COX-2 induces breast cancer stem cells via EP4/PI3K/AKT/NOTCH/WNT axis [J]. Stem Cells, 2016, 34(9):2290-2305.
[56]
Munoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming[J]. Mol Oncol, 2012, 6(6):620-636.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要