切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 330 -338. doi: 10.3877/cma.j.issn.1674-0807.2024.06.002

论著

LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展
刘伟1, 牛云峰2, 安杰2,()   
  1. 1.050082 石家庄,解放军联勤保障部队第九八2医院普外一科
    2.050082 石家庄,解放军联勤保障部队第九八2医院病理科
  • 收稿日期:2024-02-06 出版日期:2024-12-01
  • 通信作者: 安杰
  • 基金资助:
    河北省医学科学研究课题计划(20231315)

LINC01232 promotes malignant progression of triple negative breast cancer through miR-516a-5p/BCL9 axis

Wei Liu1, Yunfeng Niu2, Jie An2,()   

  1. 1.Department of General Surgery, The 980 Hospital of Joint Logistics Support Force of PLA, Shijiazhuang 050082, China
    2.Department of Pathology, The 980 Hospital of Joint Logistics Support Force of PLA, Shijiazhuang 050082, China
  • Received:2024-02-06 Published:2024-12-01
  • Corresponding author: Jie An
引用本文:

刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.

Wei Liu, Yunfeng Niu, Jie An. LINC01232 promotes malignant progression of triple negative breast cancer through miR-516a-5p/BCL9 axis[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(06): 330-338.

目的

研究LINC01232 在三阴性乳腺癌(TNBC)中的作用机制,探索与miR-516a-5p/BCL9 轴的调控关系。

方法

基因表达综合数据库(GEO)筛选与TNBC 恶性进展相关的差异表达基因。实时定量RT-PCR 检测LINC01232 在TNBC 中的表达水平,细胞功能实验探索LINC01232 对TNBC 进展的潜在影响。 生物信息学预测LINC01232 与miR-516a-5p 和B 细胞淋巴因子9(BCL9)之间的结合位点,并利用双荧光素酶报告基因和RNA 免疫沉淀实验验证它们之间的结合活性。

结果

与邻近正常组织相比,TNBC 组织中LINC01232 表达异常升高(0.797±0.449 比2.524±1.099,t=11.273,P<0.001)。 对LINC01232 进行敲低,各组增殖细胞数量比较差异有统计学意义(F=884.428, P<0.001),分组与时间点之间存在交互作用(F=54.276, P<0.001),与对照组相比,72、96 h 敲低组细胞增殖能力明显降低(t=8.933, P<0.001; t=8.378, P<0.001)。 克隆形成实验结果显示,与对照组相比,敲低组克隆数量明显减少(t=35.308, P<0.001)。 Transwell 实验结果显示,与对照组相比,敲低组中迁移和侵袭细胞数量明显减少(t=40.455, P<0.001; t=48.039, P<0.001)。 LINC01232 能够与miR-516a-5p 竞争性结合,抑制miR-516a-5p 表达,从而上调BCL9 表达。 MTS 实验结果显示,sh-NC,sh-LINC01232 和sh-LINC01232 及miR-516a-5p 抑制剂共转染组,3 组之间差异有统计学意义(F=4412.680, P<0.001),分组与时间点之间存在交互作用(F=64.100, P<0.001)。 与对照组相比,72、96 h 敲低LINC01232 可以显著抑制乳腺癌细胞的增殖(t=4.011, P=0.007; t=13.993, P<0.001),共转染一定程度恢复乳腺癌细胞的增殖能力(t=-1.734, P=0.134; t=-1.091, P=0.317)。 克隆形成实验中,3 组克隆形成数差异有统计学意义(F=891.520, P<0.001),组间内两两比较,敲低LINC01232 可以显著抑制乳腺癌细胞的增殖(t=44.111, P<0.001),共转染一定程度恢复乳腺癌细胞的增殖能力(t=-0.220, P=0.810)。 Transwell 实验结果显示,3 组迁移及侵袭细胞数差异有统计学意义(F=2114.691, P<0.001; F=810.413, P<0.001),组间内进一步两两比较,敲低LINC01232 后,乳腺癌细胞的迁移和侵袭明显减少(t=55.103, P<0.001, t=51.879,P<0.001),共转染后乳腺癌细胞迁移和侵袭能力与对照组相比有所恢复(t=-0.223, P=0.822, t=-9.470,P<0.001)。

结论

在三阴性乳腺癌细胞中,LINC01232 通过miR-516a-5p/BCL9 轴促进TNBC 肿瘤细胞体外迁移和侵袭能力。

Objective

To investigate the role of LINC01232 in triple negative breast cancer (TNBC)and explore the regulatory relationship with miR-516a-5p/BCL9 axis.

Methods

The Gene Expression Omnibus (GEO) database was screened for differentially expressed genes associated with TNBC malignant progression. Real-time quantitative RT-PCR was performed to detect the expression of LINC01232 in TNBC,and cell function experiments were performed to explore the potential effect of LINC01232 on TNBC progression.Bioinformatics analysis was performed to analyze the association between LINC01232 and miR-516a-5p and B-cell lymphokine 9 (BCL9), and their binding activities were verified using dual-luciferase reporter gene and RNA immunoprecipitation assays.

Results

Compared with adjacent normal tissue, the expression of LINC01232 was abnormally elevated in TNBC tissue (0.797±0.449 vs 2.524±1.099, t=11.273, P<0.001).When LINC01232 was targeted for knockdown, breast cancer cell proliferation among different groups showed a statistically significant difference (F=884.428, P<0.001), with an interaction between subgroups and time points (F=54.276, P<0.001). Compared with the control group, cell proliferation ability was reduced in the LINC01232 knockdown group at 72, 96 h(t=8.933, P<0.001; t=8.378, P<0.001). Clone formation assay showed that the number of clones in the LINC01232 knockdown group was reduced compared with the control group (t=40.455,48.039, both P<0.001). Transwell assay showed that the number of migrated and invaded cells in the LINC01232 knockdown group was significantly reduced compared with the control group (539.3±0.1 vs 344.3±0.6, t=35.308, P<0.001). LINC01232 was able to competitively bind to miR-516a-5p and inhibit the expression of miR-516a-5p, thus upregulating the expression of BCL9. The results of MTS experiments showed that there was a statistical difference between sh-NC, sh-LINC01232 and sh-LINC01232 and miR-516a-5p inhibitor co-transfection groups (F = 4412.680, P <0.001) and an interaction between subgroups and time points (F= 64.100, P <0.001). Knockdown of LINC01232 at 72, 96 h significantly inhibited the proliferation of breast cancer cells (t = 4.011, P = 0.007; t = 13.993, P <0.001), and cotransfection somewhat restored the proliferation ability of breast cancer cells (t=-1.734, P=0.134; t=-1.091, P=0.317). In the clone formation experiment, Statistical differences existed between groups (F=891.520, P<0.001), and pairwise comparison within groups showed the knockdown of LINC01232 inhibited the proliferation of breast cancer cells (t=44.111, P<0.001), and co-transfection restored the proliferative ability of breast cancer cells to a certain extent (t=-0.220, P=0.810).The results of Transwell assay showed that statistical differences were observed in the migrated cells and invasive cells among three groups (F=2114.691,P<0.001; F=810.413, P<0.001), and pairwise comparisons within the groups showed that knockdown of LINC01232 reduced the migration and invasion of breast cancer cells (t=55.103, P<0.001, t=51.879, P<0.001), and the migration and invasion ability of breast cancer cells was reduced after cotransfection (t=-0.223, P=0.822, t=-9.470, P<0.001).

Conclusions

In triple negative breast cancer cells, LINC01232 promotes the migration and invasion capacity of TNBC cells in vitro via the miR-516a-5p/BCL9 axis.

表1 实时定量RT-PCR 引物
图1 GEO 数据库中TNBC 与正常对照组之间差异表达的基因筛选 a、b 图分别为TNBC 与正常乳腺之间差异表达基因的火山图和热图
图2 三阴性乳腺癌组织中BCL9 的免疫组织化学染色(DAB×200) a、b 图分别为三阴性乳腺癌组织和非三阴性乳腺癌组织,阳性颗粒定位于细胞核
[1]
Alsamri H, Al DY, Iratni R.Targeting triple-negative breast cancer by the phytopolyphenol carnosol: Ros-dependent mechanisms [ J].Antioxidants (Basel), 2023,12(7):1349.
[2]
唐璐,徐静,樊俊,等.唾液酸结合Ig 样凝集素15 对三阴性乳腺癌细胞增殖、迁移和侵袭的影响[J/CD].中华乳腺病杂志(电子版),2024,18(2):93-101.
[3]
Su T, Liu JD, Zhang NS,et al. New insights on the interplays between m6A modifications and microRNA or lncRNA in gastrointestinal cancers [J]. Front Cell Dev Biol, 2023, 11:1157797.
[4]
Zhang Q, Wang CC, Yang Y, et al. LncRNA and its role in gastric cancer immunotherapy [J]. Front Cell Dev Biol, 2023, 11:1052942.
[5]
Li K,Wang ZQ. LncRNA NEAT1: key player in neurodegenerative diseases [J]. Ageing Res Rev, 2023, 86:101878.
[6]
Xu J,Wang X, Zhu CM, et al. A review of current evidence about lncRNA MEG3:A tumor suppressor in multiple cancers[J]. Front Cell Dev Biol, 2022, 10:997633.
[7]
Li Q, Lei CB, Lu CL, et al. LINC01232 exerts oncogenic activities in pancreatic adenocarcinoma via regulation of TM9SF2 [J]. Cell Death Dis, 2019, 10(10):698.
[8]
Chen G, Liao JT, Xu Y, et al. LINC01232 promotes metastasis and EMT by regulating miR-506-5p/PAK1 axis in gastric cancer [J].Cancer Manag Res, 2022, 14:1729-1740.
[9]
Torres QS, Canha-Borges A, Oliveira MJ, et al. Special issue:nanotherapeutics in women’s health emerging nanotechnologies for triple-negative breast cancer treatment [J]. Small,2023,0:e2300666.
[10]
Guo JM, Hu JJ, Zheng YC, et al. Artificial intelligence: opportunities and challenges in the clinical applications of triple-negative breast cancer [J]. Br J Cancer, 2023, 23(8):800-812.
[11]
Hong YL, Zhang YX, Zhao HB, et al. The roles of lncRNA functions and regulatory mechanisms in the diagnosis and treatment of hepatocellular carcinoma [J]. Front Cell Dev Biol,2022,10:1051306.
[12]
Yang JJ, Li Z,Wang LN,et al. The role of non-coding RNAs(miRNA and lncRNA) in the clinical management of rheumatoid arthritis [J].Pharmacol Res, 2022, 186:106549.
[13]
Badmalia MD, Sette PH, Siddiqui MQ, et al. A comprehensive review of methods to study lncRNA-protein interactions in solution [J].Biochem Soc Trans, 2022, 50(5):1415-1426.
[14]
Abd EF, Abulsoud AI, AbdelHamid SG, et al. Interactome battling of lncRNA CCDC144NL-AS1:Its role in the emergence and ferocity of cancer and beyond [J]. Int J Biol Macromol,2022,222(Pt B):1676-1687.
[15]
Zhang DL, Hua ML, Zhang N. LINC01232 promotes lung squamous cell carcinoma progression through modulating miR-181a-5p/SMAD2 axis [J]. Am J Med Sci, 2023, 365(4), 386-395.
[16]
Liu QL, Lei CB. LINC01232 serves as a novel biomarker and promotes tumour progression by sponging miR-204-5p and upregulating RAB22A in clear cell renal cell carcinoma [J]. Ann Med,2021,53(1):2153-2164.
[17]
Zhao QN, Cheng JX, Gao AM, et al. Duodenal-Jejunal bypass improves metabolism and re-models extra cellular matrix through modulating ceRNA network [J]. Genomics, 2023, 115(6):110744.
[18]
Ye XY, Xu L, Lu S, et al. MiR-516a-5p inhibits the proliferation of non-small cell lung cancer by targeting HIST3H2A [J]. Int J Immunopathol Pharmacol, 2019, 33: 2058738419841481.
[19]
Zou XQ, Jiang M. via CircMYC regulates the mitochondrial respiration and cell viability miR-516a-5p/AKT3 axis in acute myeloid leukemia [J]. Am J Transl Res, 2021, 13(9):10112-10126.
[20]
Van OI, Hormann FM, Hoogkamer AQ, et al. MEF2DBCL9Characterization of a novel fusion-positive acute lymphoblastic leukemia cell line [J]. Haematologica, 2023, 108(10):2859-2864.
[21]
Zhang XJ, Zhang RH, Hao J, et al. miRNA-122-5p in POI ovarianderived exosomes promotes granulosa cell apoptosis by regulating BCL9 [J]. Cancer Med, 2022, 11(12):2414-2426.
[22]
Liu DS, Chen CS, Cui MM, et al. miR-140-3p inhibits colorectal cancer progression and its liver metastasis by targeting BCL9 and BCL2 [J]. Cancer Med, 2021, 10(10):3358-3372.
[23]
Huge N, Sandbothe M, Schröder AK, et al. Wnt status-dependent oncogenic role of BCL9 and BCL9L in hepatocellular carcinoma [J].Hepatol Int, 2020, 14(3):373-384.
[24]
Rao XW, Liu X, Liu NN, et al. Long noncoding RNA NEAT1 promotes tumorigenesis in H. pylori gastric cancer by sponging miR-30a to regulate COX-2/BCL9 pathway [J]. Helicobacter,2021,26(6):e12847.
[1] 牛海刚, 郭文科. 三阴性乳腺癌组织中双特异性磷酸酶14与核受体相互作用蛋白1的表达及预后价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 199-205.
[2] 于溟璇, 杜华, 张彩虹, 师迎旭. miRNA-192家族在乳腺癌中的作用机制及诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 235-240.
[3] 曾铖, 张剑. 抗体药物偶联物在三阴性乳腺癌中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(03): 140-145.
[4] 广东省医学会乳腺病学分会(广东省医学会乳腺病学分会青年委员会), 长江学术带乳腺联盟, 重庆市医学会乳腺病分会, 广东省预防医学会乳腺癌防治专业委员会. 三阴性乳腺癌新辅助铂类应用专家共识(2023版)[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(01): 1-10.
[5] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J/OL]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[6] 魏艺, 周羽西, 杨烨, 凌秀凤, 赵纯. 微小RNA对子宫内膜容受性影响的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 266-270.
[7] 王欢欢, 郑少祥, 郝金锦, 陈文亮. 胃癌分子分型的研究进展及相关联系[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 229-234.
[8] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[9] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[10] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[11] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[12] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[13] 王楚风, 蒋安. 原发性肝癌的分子诊断[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[14] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[15] 蒲丹, 龙煊, 周玉龙, 李甘霖. 血清外泌体miR-224对结直肠癌肝转移患者射频消融治疗后复发的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 45-52.
阅读次数
全文


摘要