切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (01) : 43 -49. doi: 10.3877/cma.j.issn.1674-0807.2018.01.009

所属专题: 文献

综述

乳腺癌免疫治疗的研究进展
薛静1, 王浩1   
  1. 1. 750004 银川,宁夏医科大学基础医学院病原生物学与医学免疫学系
  • 收稿日期:2017-04-06 出版日期:2018-02-01
  • 基金资助:
    国家自然科学基金青年基金资助项目(81602713)

Research progress in immunotheray for breast cancer

Jing Xue1, Hao Wang1   

  • Received:2017-04-06 Published:2018-02-01
引用本文:

薛静, 王浩. 乳腺癌免疫治疗的研究进展[J]. 中华乳腺病杂志(电子版), 2018, 12(01): 43-49.

Jing Xue, Hao Wang. Research progress in immunotheray for breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2018, 12(01): 43-49.

免疫治疗是继手术、放射治疗、化疗、内分泌治疗等之后的乳腺癌重要治疗手段。近年来,随着免疫学的不断发展,乳腺癌的免疫治疗取得了很大的进步,并日益受到临床医师的重视。笔者简述了针对乳腺癌治疗相关靶点的治疗性疫苗,如免疫检查点相关疫苗、特异性抗原疫苗、细胞疫苗、病毒载体疫苗和双特异性抗体疫苗等,同时,还介绍了近年来针对乳腺癌的预防性疫苗,这将有利于临床医师进一步了解乳腺癌免疫治疗的现状与进展。

表1 治疗性乳腺癌疫苗的临床试验
疫苗及联合药物 乳腺癌类型 例数 临床试验 生物标志物或效应 临床疗效 参考文献
免疫检查点相关疫苗及联合用药 ? ? ? ? ? ?
? IMP321+紫杉醇 转移性乳腺癌 30 1期/2期 APC、自然杀伤细胞与CD8效应T细胞的比例呈持续性增加 PFS率:90% [2]
? tremelimumab+依西美坦 转移性激素敏感型乳腺癌 26 1期 外周血中ICOST细胞/FoxP3调节性T细胞的比率显著增加 ORR:42% [3]
? ipilimumab、冷冻消融或两者联合治疗 浸润性乳腺癌 19 1期 外周血中Th1、激活的ICOST细胞及CD4T、CD8T细胞升高 NR [4]
? pembrolizumab PD-L1阳性晚期三阴性乳腺癌 32 1b期 NR 6个月PFS率:23.3% [5]
? MPDL3280A PD-L1阳性或PD-L1阴性乳腺癌 54 1a期 CD8T细胞增殖和IL-18水平增加 ORR:19%,其中2例CR,2例PR [6]
? atezolizumab 转移性三阴性乳腺癌 115 1期 TIL和CD8T细胞水平增加 提高生存率 [7]
特异性抗原疫苗及联合用药 ? ? ? ? ? ?
? HER-2肽+GM-CSF佐剂 Ⅲ、Ⅵ期HER-2阳性乳腺癌,卵巢癌和肺癌 64 1期 HER-2特异性DTH、T细胞、Ab NR [8,9,10,11,12]
? HER-2 ICD蛋白+GM-CSF佐剂 Ⅱ~Ⅳ期HER-2阳性乳腺癌和卵巢癌 29 1期 HER-2特异性Ab和T细胞 NR [13]
? HER-2肽+GM-CSF佐剂和曲妥珠单克隆抗体 Ⅳ期HER-2阳性乳腺癌 22 1期/2期 HER-2特异性T细胞,血浆TGF-β减少 NR [14]
? HER-2蛋白+AS15佐剂和拉帕替尼 Ⅳ期HER-2阳性乳腺癌 12 1期 HER-2特异性Ab和T细胞免疫应答 NR [15]
? HER-2肽+GM-CSF佐剂 Ⅳ期HER-2阳性乳腺癌和卵巢癌 14 1期 HER-2特异性DTH,能分泌IFN-γ和溶解肿瘤细胞的CD8T细胞 NR [16]
? GP2+GM-CSF+曲妥珠单克隆抗体 HER-2阳性乳腺癌 17 Ib期 IFN-γ分泌增加 NR [17]
? STn-KLH+CY和KLH+CY相对照 Ⅳ期乳腺癌 1 028 3期 新特异性疫苗Ab 无差异 [18]
? MUC1 Ⅱ期乳腺癌 31 3期 NR 对OS有益 [19,20]
? 肿瘤相关糖抗原Lewis Y与神经节苷脂GD2 Ⅳ期乳腺癌 6 1期 提高特异性抗体水平 潜在临床应用价值 [21]
? 生存素肽±IFN 晚期/复发乳腺癌 14 1期 生存素特异性T细胞 SD率:14% [21]
? 乳球蛋白cDNA Ⅳ期乳腺癌 14 1期 乳球蛋白特异性T细胞 可能获益 [22]
乳腺癌细胞疫苗及联合用药 ? ? ? ? ? ?
? HER-2-DC (lapuleucel-T) Ⅳ期HER-2阳性乳腺癌 18 1期 HER-2特异性T细胞增殖 SD率:16.7% [23]
? p53-DC Ⅳ期乳腺癌 26 2期 p53特异性T细胞:38%,Ab:42% SD率:42% [24]
? 异源性分泌型GM-CSF乳腺肿瘤细胞+低剂量CY和DOX Ⅳ期乳腺癌 28 1期 HER-2特异DTH和Ab;最佳化疗剂量CY为200 mg/m2,DOX为35 mg/m2 NR [25]
? 异源性分泌型GM-CSF乳腺肿瘤细胞+低剂量CY和曲妥珠单克隆抗体 Ⅳ期HER-2阳性乳腺癌 20 1期 HER-2特异DTH和CD8T细胞,Tregs和MDSCs减少 6个月CB率:55%;PFS:7个月;OS:42个月 [26]
? CY、噻替派、卡铂联合DC-CIK 转移性三阴性乳腺癌 23 1期 NR PR率:13%,SD率:56.6% [27]
病毒载体疫苗及联合用药 ? ? ? ? ? ?
? PANVAC? 转移性乳腺癌 12 1期 特异性CD4T细胞应答,并产生高水平的CEA特异性T细胞 SD率:33%CR率:8% [28]
双特异性抗体及联合用药 ? ? ? ? ? ?
? 连有活化T细胞的抗HER-2/CD3双特异性抗体 转移性乳腺癌 23 1期 诱导固有免疫应答 SD率:59.1% [29]
表2 关于预防乳腺癌复发疫苗的临床试验
[1]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012 [J]. CA Cancer J Clin, 2015, 65(2): 87-108.
[2]
Bridnone C, Gutierrez M, Mefti F, et al. First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity [J]. J Transl Med, 2010, 8: 71.
[3]
Vonderheide RH, Lorusso PM, Khalil M, et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells [J]. Clin Cancer Res, 2010, 16(13): 3485-3494.
[4]
Mcarthur HL, Diab A, Page DB, et al. A pilot study of preoperative single-dose Ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling [J]. Clin Cancer Res, 2016, 22(23): 5729-5737.
[5]
Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study [J]. J Clin Oncol, 2016, 34(21): 2460-2467.
[6]
Cha E, Wallin J, Kowanetz M. PD-L1 inhibition with MPDL3280A for solid tumors [J]. Semin Oncol, 2015, 42(3): 484-487.
[7]
No authors listed. Atezolizumab extends survival for breast cancer [J]. Cancer Discov, 2017, 7(6): OF10.
[8]
Disis ML, Grabstein KH, Sleath PR, et al. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine [J]. Clin Cancer Res, 1999, 5(6): 1289-1297.
[9]
Knutson KL, Schiffman K, Cheever MA, et al. Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369-377, results in short-lived peptide-specific immunity [J]. Clin Cancer Res, 2002, 8(5): 1014-1018.
[10]
Disis ML, Schiffman K, Gooley TA, et al. Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after HER-2/neu peptide immunization [J]. Clin Cancer Res, 2000, 6(4): 1347-1350.
[11]
Knutson KL, Schiffman K, Disis ML. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients [J]. J Clin Invest, 2001, 107(4): 477-484.
[12]
Razazan A, Behravan J, Arab A, et al. Conjugated nanoliposome with the HER2/neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model [J]. PLoS One, 2017, 12(10): e0185099.
[13]
Disis ML, Schiffman K, Guthrie K, et al. Effect of dose on immune response in patients vaccinated with an her-2/neu intracellular domain protein--based vaccine [J]. J Clin Oncol, 2004, 22(10): 1916-1925.
[14]
Gall VA, Philips AV, Qiao N, et al. Trastuzumab increases HER2 uptake and cross-presentation by dendritic cells [J]. Cancer Res, 2017, 77(19): 5374-5383.
[15]
Kim SB, Ahn JH, Kim J, et al. A phase 1 study of a heterologous prime-boost vaccination involving a truncated HER2 sequence in patients with HER2-expressing breast cancer [J]. Mol Ther Methods Clin Dev, 2015, 2: 15 031.
[16]
Murray JL, Gillogly ME, Przepiorka D, et al. Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369-377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer [J]. Clin Cancer Res, 2002, 8(11): 3407-3418.
[17]
Clifton GT, Litton JK, Arrington K, et al. Results of a phase Ib trial of combination immunotherapy with a CD8+ T cell eliciting vaccine and trastuzumab in breast cancer patients [J]. Ann Surg Oncol, 2017, 24(8): 2161-2167.
[18]
Miles D, Roche H, Martin M, et al. Phase Ⅲ multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer [J]. Oncologist, 2011, 16(8): 1092-1100.
[19]
Perpes Lde P, da Luz FA, Pultz Bdos A, et al. Peptide vaccines in breast cancer: The immunological basis for clinical response [J]. Biotechnol Adv, 2015, 33(8): 1868-1877.
[20]
Vassilaros S, Tsibanis A, Tsikkinis A, et al. Up to 15-year clinical follow-up of a pilot Phase Ⅲ immunotherapy study in stage Ⅱ breast cancer patients using oxidized mannan-MUC1 [J]. Immunotherapy, 2013, 5(11): 1177-1182.
[21]
Hutchins LF, Makhoul I, Emanuel PD, et al. Targeting tumor-associated carbohydrate antigens: a phase I study of a carbohydrate mimetic-peptide vaccine in stage IV breast cancer subjects [J]. Oncotarget, 2017, 8(58): 99 161-99 178.
[22]
Kim SW, Goedegebuure P, Gillanders WE. Mammaglobin-A is a traget for breast cancer vaccination [J]. Oncoimmunology, 2016, 5(2): e1069940.
[23]
Park JW, Melisko ME, Esserman LJ, et al. Treatment with autologous antigen-presenting cells activated with the HER-2 based antigen lapuleucel-T: results of a phase I study in immunologic and clinical activity in HER-2 overexpressing breast cancer [J]. J Clin Oncol, 2007, 25(24): 3680-3687.
[24]
Svane IM, Pedersen AE, Johansen JS, et al. Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers [J]. Cancer Immunol Immunother, 2007, 56(9): 1485-1499.
[25]
Emens LA, Asquith JM, Leatherman JM, et al. Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation [J]. J Clin Oncol, 2009, 27(35): 5911-5918.
[26]
Chen G, Gupta R, Petrik S, et al. A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer [J]. Cancer Immunol Res, 2014, 2(10): 949-961.
[27]
Wang X, Ren J, Zhang J, et al. Prospective study of cyclophosphamide, thiotepa, carboplatin combined with adoptive DC-CIK followed by metronomic cyclophosphamide therapy as salvage treatment for triple negative metastatic breast cancers patients (aged <45)[J]. Clin Transl Oncol, 2016, 18(1): 82-87.
[28]
Yu LY, Tang J, Zhang CM, et al. New immunotherapy strategies in breast cancer [J]. Int J Environ Res Public Health, 2017, 14(1): E68.
[29]
Lum LG, Thakur A, Al-Kadhimi Z, et al. Targeted T-cell therapy in stage Ⅳ breast cancer: A phase Ⅰ clinical trial [J]. Clin Cancer Res, 2015, 21(10): 2305-2314.
[30]
Kok M. LAG-3: anothr brake to release in breast cancer? [J]. Ann Oncol, 2017, 28(12): 2907-2908.
[31]
Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what's here, what's next? [J]. Curr Opin Immunol, 2015, 33: 23-35.
[32]
Bedognetti D, Maccalli C, Bader SB, et al. Checkpoint inhibitors and their application in breast cancer [J]. Breast Care (Basel), 2016, 11(2): 108-115.
[33]
Mohr P, Ascierto P, Arance A, et al. Real-world treatment patterns and outcomes among metastatic cutaneous melanoma patients treated with ipilimumab [J]. J Eur Acad Dermatol Venereol, 2017. [2017-03-06].

URL    
[34]
Oh A, Tran DM, McDowell LC, et al. Cost-effectiveness of nivolumab-ipilimumab combination therapy compared with monotherapy for first-line treatment of metastatic melanoma in the United States [J]. J Manag Care Spec Pharm, 2017, 23(6): 653-664.
[35]
Comin-Anduix B, Escuin-Ordinas H, Ibarrondo FJ. Tremelimumab: research and clinical development [J]. Onco Targets Ther, 2016, 9: 1767-1776.
[36]
黄晓嘉,唐海林,谢小明. 程序性死亡配体1在三阴性乳腺癌中的研究进展[J/CD]. 中华乳腺病杂志(电子版),2017,11(4):234-237.
[37]
Lipson EJ, Forde PM, Hammers HJ, et al. Antagonists of PD-1 and PD-L1 in cancer treatment [J]. Semin Oncol, 2015, 42(4): 587-600.
[38]
Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation [J]. N Engl J Med, 2015, 372(4): 320-330.
[39]
Josefsson A, Nedrow JR, Park S, et al. Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer [J]. Cancer Res, 2016, 76(2): 472-479.
[40]
Loi S, Dushyanthen S, Beavis PA, et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors [J]. Clin Cancer Res, 2016, 22(6): 1499-1509.
[41]
Black M, Barsoum IB, Truesdell P, et al. Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis [J]. Oncotarget, 2016, 7(9): 10 557-10 567.
[42]
Costa RLB, Soliman H, Czerniecki BJ, et al. The clinical development of vaccines for HER2+ breast cancer: Current landscape and future perspectives [J]. Cancer Treat Rev, 2017, 61: 107-115.
[43]
Clifton GT, Mittendorf EA, Peoples GE. Adjuvant HER2/neu peptide cancer vaccines in breast cancer [J]. Immunotherapy, 2015, 7(11): 1159-1168.
[44]
Swallow DM, Griffiths B, Bramwell M, et al. Detection of the urinary 'PUM’ polymorphism by the tumour-binding monoclonal antibodies Ca1, Ca2, Ca3, HMFG1, and HMFG2 [J]. Dis Markers, 1986, 4(4): 247-254.
[45]
Cimino-Mathews A, Foote JB, Emens LA. Immune targeting in breast cancer [J]. Oncology (Williston Park), 2015, 29(5): 375-385.
[46]
Musselli C, Ragupathi G, Gilewski T, et al. Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1 [J]. Int J Cancer, 2002, 97(5): 660-667.
[47]
Miles DW, Towlson KE, Graham R, et al. A randomised phase II study of sialyl-Tn and DETOX-B adjuvant with or without cyclophosphamide pretreatment for the active specific immunotherapy of breast cancer [J]. Br J Cancer, 1996, 74(8): 1292-1296.
[48]
Degregorio M, Degregorio M, Wurz GT, et al. L-BLP25 vaccine plus letrozole for breast cancer: Is translation possible? [J]. Oncoimmunology, 2012, 1(8): 1422-1424.
[49]
Cai H, Degliangeli F, Palitzsch B, et al. Glycopeptide-functionalized gold nanoparticles for antibody induction against the tumor associated mucin-1 glycoprotein[J]. Bioorg Med Chem, 2016, 24(5): 1132-1135.
[50]
Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma [J]. Nat Med, 1997, 3(8): 917-921.
[51]
张帅,刘波,张波,等. 生存素表达对缺氧人肺动脉平滑肌细胞凋亡与增殖的影响[J]. 中华结核和呼吸杂志,2015,38(1):45-49.
[52]
Qiu Y, Li X, Yi B, et al. Protein phosphatase PHLPP induces cell apoptosis and exerts anticancer activity by inhibiting survivin phosphorylation and nuclear export in gallbladder cancer [J]. Oncotarget, 2015, 6(22): 19 148-19 162.
[53]
Garg H, Suri P, Gupta JC, et al. Survivin: a unique target for tumor therapy [J]. Cancer Cell Int, 2016, 16: 49.
[54]
徐亮,熊秋云. Survivin在乳腺癌中作用的研究进展[J/CD]. 中华乳腺病杂志(电子版), 2012,6(4):429-435.
[55]
Davis-Sproul JM, Harris MP, Davidson NE, et al. Cost-effective manufacture of an allogeneic GM-CSF-secreting breast tumor vaccine in an academic cGMP facility [J]. Cytotherapy, 2005, 7(1): 46-56.
[56]
Soiman H, Mediavilla-Vaaarela M, Antonia SJ. A GM-CSF and CD40L bystander vaccine is effective in a murine breast cancer model [J]. Breast Cancer (Dove Med Press), 2015, 7: 389-397.
[57]
Clifton GT, Gall V, Peoples GE, et al. Clinical development of the E75 vaccine in breast cancer [J]. Breast Care (Basel), 2016, 11(2): 116-121.
[58]
Sharma A, Koldovsky U, Xu S, et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ [J]. Cancer, 2012, 118(17): 4354-4362.
[59]
Smith SG, Foy R, McGowan JA, et al. Prescribing tamoxifen in primary care for the prevention of breast cancer: a national online survey of GPs' attitudes [J]. Br J Gen Pract, 2017, 67(659): e414-e427.
[60]
Clifton GT, Peoples GE, Mittendorf EA. The development and use of the E75 (HER2 369-377) peptide vaccine [J]. Future Oncol, 2016, 12(11): 1321-1329.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要