切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2011, Vol. 05 ›› Issue (03) : 313 -322. doi: 10.3877/cma.j.issn.1674-0807.2011.03.007

实验研究

短发夹RNA 沉默促肝细胞再生磷酸酶-3 基因表达对乳腺癌MCF-7 细胞生长和侵袭能力的影响
钟琰1, 吴爱国1,(), 纪术峰1, 沈三弟1   
  1. 1.510282 广州,南方医科大学珠江医院普外科
  • 收稿日期:2011-03-02 出版日期:2011-06-01
  • 通信作者: 吴爱国
  • 基金资助:
    广东省科技计划资助项目(2008B030301345)

Effect of shRNA silencing PRL-3 gene expression on the growth and invasiveness of breast cancer MCF-7 cells

Yan ZHONG1, Ai-guo WU1,(), Shu-feng JI1, San-di SHEN1   

  1. 1.Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
  • Received:2011-03-02 Published:2011-06-01
  • Corresponding author: Ai-guo WU
引用本文:

钟琰, 吴爱国, 纪术峰, 沈三弟. 短发夹RNA 沉默促肝细胞再生磷酸酶-3 基因表达对乳腺癌MCF-7 细胞生长和侵袭能力的影响[J/OL]. 中华乳腺病杂志(电子版), 2011, 05(03): 313-322.

Yan ZHONG, Ai-guo WU, Shu-feng JI, San-di SHEN. Effect of shRNA silencing PRL-3 gene expression on the growth and invasiveness of breast cancer MCF-7 cells[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2011, 05(03): 313-322.

目的

构建以促肝细胞再生磷酸酶-3(PRL-3)为靶基因的短发夹状小干扰RNA(short hairpin RNA,shRNA)表达载体,并探讨PRL-3- shRNA 表达载体对人乳腺癌MCF-7 细胞增殖、凋亡和侵袭能力的影响。

方法

构建PRL-3 基因特异性shRNA 表达载体,使用脂质体法将PRL-3-shRNA 表达载体转染入MCF-7 细胞。 采用Real-time PCR 和Western blot 分别检测转染后MCF-7 细胞中PRL-3 基因mRNA 和蛋白的表达;运用四甲基偶氮唑蓝(methyl thiazolyl tetrazolium, MTT)比色法检测转染后MCF-7 细胞的增殖水平,用流式细胞仪检测细胞凋亡的情况;采用Transwell 小室法检测细胞侵袭力变化。 计量资料采用单因素方差分析或重复测量方差分析。

结果

酶切鉴定和测序分析证实PRL-3-shRNA 表达载体成功构建。 转染成功后,shRNA-1 ~3 组PRL-3 基因mRNA 表达分别为(0.31±0.27)、(0.15±0.14)和(0.31±0.03),与空白组和阴性组(1.00±0.00、0.98±0.18)相比,差异有统计学意义( P<0.05)。 PRL-3-shRNA-2 组PRL-3 蛋白的表达量明显低于阴性组和空白组(0.50±0.02 比0.91±0.03 和0.89±0.02,P<0.05);PRL-3-shRNA-2转染入MCF-7 细胞后能明显降低其增殖水平(P<0.05);PRL-3-shRNA-2 组凋亡率明显高于空白组和阴性组[(8. 37±1. 85)%比(1. 60±1. 58)%和(0.16±0. 05)%,P <0. 05];Transwell 小室侵袭实验显示,PRL-3-shRNA-2 组穿膜细胞数明显低于阴性组和空白组(P<0.05)。

结论

沉默PRL-3 基因表达可抑制MCF-7 细胞的增殖,促进凋亡,抑制其侵袭能力。

Objective

To study the effect of short hairpin RNA(shRNA) targeting phosphatase of regenerating liver-3(PRL-3) gene on the proliferation, apoptosis, and invasiveness of breast cancer MCF-7 cells.

Methods

The PRL-3 specific shRNA expression vector was constructed and confirmed by sequencing analysis. PRL-3-shRNA expression vector was transfected into MCF-7 cells via lipofectamineTM 2000. The expression level of mRNA and protein after transfection were determined by Real-time PCR and Western bolt respectively. Flow cytometry and MTT assay were performed to assess the effects of the PRL-3-shRNA on the proliferation and apoptosis of MCF-7 cells. Invasion capability of stably transfected MCF-7 cells was evaluated by transwell chamber model assay in vitro. Comparison between quantitative data was performed using one-way ANOVA or repeated measures ANOVA.

Results

PRL-3-shRNA expression vector was successfully constructed and transfected into MCF-7 cells. The PRL-3 mRNA levels in the groups of shRNA-1 ~3 were respectively reduced to (0.31±0.27),(0.15±0.14)and(0.31±0.03)after transfection,and were significantly lower than both the blank group (1.00±0.00) and the negative group(0.98±0.18); the difference was statistically significant (P<0.05). The PRL-3 protein level in the group of shRNA-2(0.50±0.02)was also significantly lower than both the blank group(0. 89±0. 02) and the negative group(0. 91±0. 03),with statistically significant difference (P<0. 05). MTT results showed that the growth of MCF-7 cells after PRL-3-shRNA-2 transfection was decreased markedly (P<0.05). The apoptotic rate in the PRL-3-shRNA-2 group (8.37±1.85% ) was increased significantly compared with the blank group(1.60±1.58%) and the negative group (0.16±0.05% ) (P<0.05). Transwell chamber model assay showed that the trans-membrane cell numbers in the PRL-3-shRNA-2 group were greatly decreased compared with the blank group and the negative group (P <0. 05).

Conclusions

Silencing the expression of PRL-3 gene can effectively suppress the proliferation and invasion capability, and promote the apoptosis of MCF-7 cells.

图1 重组载体的酶切鉴定图 M:DL2000 标记条带;1:PRL-3-shRNA-1;2:PRL-3-shRNA-2;3:PRL-3-shRNA-3
表1 转染后72 h 各组PRL-3mRNA 相对表达量
图2 Real-time PCR 检测PRL-3mRNA 的表达 M:标记条带;1: PRL-3-shRNA-3 组;2: PRL-3-shRNA-2 组;3: PRL-3-shRNA-1 组;4:空白组;5:阴性组
表2 各组MCF-7 细胞PRL-3 蛋白的相对灰度值比较
图3 各组PRL-3 蛋白的表达 1:空白组; 2:阴性组; 3:PRL-3-shRNA-2 组
表3 转染后各组细胞的吸光度值比较
图4 各组细胞的增殖能力比较 a: P<0.05,与空白组比较
表4 细胞周期分布情况 (%)
图5 各组细胞的凋亡率比较 a:P<0.05,分别与阴性组和空白组比较
表5 各组穿膜细胞数比较
[1]
Guzińska Ustymowicz K, Pryczynicz A. PRL-3, an emerging marker of carcinogenesis, is strongly associated with poor prognosis [J]. Anticancer Agents Med Chem,2011,11(1):99-100.
[2]
Polato F, Codegoni A, Fruscio R, et al. PRL-3 phosphatase is implicated in ovarian cancer growth [J]. Clin Cancer Res,2005, 11(19 Pt 1): 6835-6839.
[3]
Wang L, Peng L, Dong B,et al. Overexpression of phosphatase of regenerating liver-3 in breast cancer: association with a poor clinical outcome [J]. Ann Oncol,2006 ,17(10):1517-1522.
[4]
Miskad UA, Semba S, Kato H, et al. Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis [J]. Pathobiology, 2004, 71(4): 176-184.
[5]
吴玫,龙飞,李姝玉,等. PRL-3 在乳腺癌中的表达及意义[J]. 中国组织化学与细胞化学杂志,2006,15(4):410-415.
[6]
吴爱国.乳腺癌基因治疗研究现状[J/CD]. 中华乳腺病杂志:电子版,2008,2(5):561-570.
[7]
Kozlov G, Cheng J, Ziomek E, et al. Structural insights into molecular function of the metastasis-associated phosphatase PRL-3[J]. J Biol Chem,2004, 279(12): 11 882-11 889.
[8]
Hunter T. Signaling-2000 and beyond [J]. Cell,2000, 100(1): 113-127.
[9]
Al Aidaroos AQ, Zeng Q. PRL-3 phosphatase and cancer metastasis [J]. J Cell Biochem, 2010,111(5):1087-1098.
[10]
Zheng P, Liu YX, Chen L, et al. Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer [J]. J Proteome Res, 2010,9(10):4897-4905.
[11]
Bardelli A, Saha S, Sager J A, et al. PRL-3 expression in metastatic cancers [J]. Clin Cancer Res,2003, 9(15):5607-5615.
[12]
Fiordalisi J J, Keller P J, Cox A D. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility[J]. Cancer Res,2006, 66(6): 3153-3161.
[13]
钱立平,范钰,陈坚,等. RNAi 沉默PRL-3 基因对大肠癌细胞侵袭的抑制[J]. 世界华人消化杂志,2008,16(7):767-770.
[14]
Matsukawa Y, Semba S, Kato H, et al. Constitutive suppression of PRL-3 inhibits invasion and proliferation of gastric cancer cell in vitro and in vivo [J]. Pathobiology,2010, 77(3): 155-162.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要