切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2026, Vol. 20 ›› Issue (01) : 16 -24. doi: 10.3877/cma.j.issn.1674-0807.2026.01.003

论著

KIF18A表达影响三阴性乳腺癌细胞恶性生物学行为
伍秋苑1,2, 张敏3, 陈芷彦1,4, 程妹1,4, 陈佩贤1, 黄慧琦1, 杨树青1, 叶国麟1, 邓裕华5, 熊亚明5, 金亚彬5, 周丹1,4,()   
  1. 1 521800 佛山,佛山市第一人民医院乳腺外科
    5 521800 佛山,佛山市第一人民医院转化研究院
    2 528318 佛山,佛山市顺德区第五人民医院/佛山市顺德区龙江医院普外科
    3 510282 广州,南方医科大学组织胚胎学教研室
    4 524000 湛江,广东医科大学第一临床医学院
  • 收稿日期:2025-01-25 出版日期:2026-02-01
  • 通信作者: 周丹
  • 基金资助:
    广东省医学科研基金(2018102592229670); 登峰计划项目(2020B018); 广东省中医药局课题(20231324)

Impact of KIF18A expression on malignant biological behaviors of triple negative breast cancer cells

Qiuyuan Wu1,2, Min Zhang3, Zhiyan Chen1,4, Mei Cheng1,4, Peixian Chen1, Huiqi Huang1, Shuqing Yang1, Guolin Ye1, Yuhua Deng5, Yaming Xiong5, Yabin Jing5, Dan Zhou1,4,()   

  1. 1 Department of Breast Surgery, First People's Hospital of Foshan, Foshan 521800, China
    5 Translational Research Institute, First People's Hospital of Foshan, Foshan 521800, China
    2 Department of General Surgery, Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan 528318, China
    3 Department of Histology and Embryology, Southern Medical University, Guangzhou 510282, China
    4 First Clinical Medical College, Guangdong Medical University, Zhanjiang 524000, China
  • Received:2025-01-25 Published:2026-02-01
  • Corresponding author: Dan Zhou
引用本文:

伍秋苑, 张敏, 陈芷彦, 程妹, 陈佩贤, 黄慧琦, 杨树青, 叶国麟, 邓裕华, 熊亚明, 金亚彬, 周丹. KIF18A表达影响三阴性乳腺癌细胞恶性生物学行为[J/OL]. 中华乳腺病杂志(电子版), 2026, 20(01): 16-24.

Qiuyuan Wu, Min Zhang, Zhiyan Chen, Mei Cheng, Peixian Chen, Huiqi Huang, Shuqing Yang, Guolin Ye, Yuhua Deng, Yaming Xiong, Yabin Jing, Dan Zhou. Impact of KIF18A expression on malignant biological behaviors of triple negative breast cancer cells[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2026, 20(01): 16-24.

目的

明确驱动蛋白家族成员18A(KIF18A)在乳腺癌中的作用及其对细胞生物学行为的影响,为治疗三阴性乳腺癌(TNBC)提供新的分子靶点。

方法

选取2012年8月至2016年12月佛山市第一人民医院TNBC手术标本138例,采用组织芯片技术检测KIF18A的表达,分析KIF18A表达对患者OS的影响。构建KIF18A过表达和干扰的TNBC细胞系[过表达:H23570组(实验组)及过表达NC组(对照组);干扰:Y20559组(实验组)及干扰NC组(对照组)]。通过CCK-8实验、流式细胞术、Transwell实验、划痕实验分别检测细胞增殖、凋亡、侵袭、迁移能力改变,Western blot检测相关信号通路蛋白表达并探讨KIF18A可能的作用机制。卡方检验分析KIF18A表达与患者临床指标的相关性。生存分析采用Kaplan-Meier法和 Log-rank检验。采用单因素及多因素Cox回归模型评估独立预后因素。服从正态分布的计量资料用

±s表示,两组间比较采用t 检验。细胞迁移宽度比较采用单因素方差分析,划痕面积的时间-组间交互效应采用析因设计方差分析。

结果

KIF18A表达在不同年龄(≤48岁比>48岁,71.4%比49.1%,χ2=4.478,P=0.034)和肿瘤大小(≤3 cm比>3 cm,67.9%比43.0%,χ2=8.111,P=0.004)的患者中差异有统计学意义。KIF18A低表达组(n=64)的OS率在各时间点均高于高表达组(n=74),两组生存曲线分化明显(HR=4.330,95%CI:2.277~6.252,P<0.001)。KIF18A高表达(HR=3.080,95%CI:1.374~6.906,P=0.006)及高TNM分期(HR=2.551,95%CI:1.204~5.402,P=0.014)是影响患者OS的独立危险因素。KIF18A基因mRNA在MDA-MB-231、MDA-MB-468、MDA-MB-453和BT474细胞系中的表达量分别为9.042±0.074,5.340±0.108,6.040±0.171,7.068±0.259,组间比较差异有统计学意义(F=274.67,P<0.000 1)。与过表达NC组比较,过表达KIF18A对细胞增殖具有促进作用(t=5.450,P=0.031),而干扰KIF18A对细胞增殖影响并不显著(t=1.708,P=0.163)。KIF18A抑制剂Sovilesib为18.77 μmol/L时,细胞增殖被显著抑制。过表达KIF18A主要抑制早期凋亡(P<0.05),而干扰KIF18A则提高整体凋亡水平(P<0.001)。在过表达组中,H23570组细胞的迁移率显著高于过表达NC组[(80.18±2.96)%比(38.18±4.32)%),t=13.901,P<0.001]。干扰KIF18A不会显著影响细胞的迁移能力,但在72 h后,干扰KIF18A后的癌细胞的迁移能力显著低于干扰NC组(P<0.001)。过表达KIF18A促进了细胞的侵袭能力(t=29.502,P<0.001),干扰KIF18A后细胞的侵袭能力被抑制(t=20.210,P<0.001)。Western blot结果显示,与过表达NC组相比,H23570组mTOR、PD-L1和CDK4的表达增加(t=7.471、9.729、4.064,P均<0.05),而PARP1的表达降低(t=12.310,P<0.05)。相反,与干扰NC组相比,Y20559组mTOR、PI3K、Akt、PD-L1、Cyclin D1和CDK4的表达降低(t=2.792、6.035、4.091、15.750、12.940、3.979,P均<0.05)。

结论

KIF18A的高表达与TNBC不良预后及恶性生物学行为相关,并可能通过调节CDK4/Cyclin D1等蛋白表达发挥作用。

Objective

To investigate the role of kinesin family member 18A (KIF18A) in breast cancer and its impact on cellular biological behaviors, and explore its potential as a novel molecular target for triple negative breast cancer (TNBC).

Methods

A total of 138 TNBC surgical specimens were collected from the Foshan First People's Hospital between August 2012 and December 2016. Tissue microarray was used to detect KIF18A expression, and its impact on patients' overall survival was analyzed. KIF18A-overexpressing and KIF18A-knockdown TNBC cell lines were constructed [overexpression: H23570 group (experimental group) and overexpression NC group (control group); knockdown: Y20559 group (experimental group) and knockdown NC group (control group)]. Cell proliferation, apoptosis, invasion and migration abilities were assessed using CCK-8 assay, flow cytometry, Transwell assay and wound healing assay, respectively. Western blot analysis was performed to detect the expression of related signaling pathway proteins and explore the potential mechanism of KIF18A. The chi-square test was used to analyze the correlation between KIF18A expression and clinical indicators. Survival analysis was performed using the Kaplan-Meier method and log-rank test. Univariate and multivariate Cox proportional hazards regression models were used to evaluate independent prognostic factors. Measurement data conforming to a normal distribution were presented as

±s, and comparisons between two groups were made using t test. One-way analysis of variance (ANOVA) was used to compare migration width, and factorial design ANOVA was used to analyze the time-group interaction effect on scratch wound area.

Results

The expression of KIF18A differed significantly between patients of different ages (≤48 years vs >48 years, 71.4% vs 49.1%, χ2=4.478, P=0.034) and tumor sizes (≤3 cm vs >3 cm, 67.9% vs 43.0%, χ2=8.111, P=0.004). The OS of KIF18A low expression group (n=64) was significantly higher than that of KIF18A high expression group (n=74) at all time points, with distinct separation of survival curves between two groups (HR=4.330, 95%CI: 2.277-6.252, P<0.001). High KIF18A expression (HR=3.080, 95%CI: 1.374-6.906, P=0.006) and advanced TNM stage (HR=2.551, 95%CI: 1.204-5.402, P=0.014) were independent risk factors for OS in TNBC patients. The mRNA expression levels of KIF18A in MDA-MB-231, MDA-MB-468, MDA-MB-453 and BT474 cell lines were 9.042±0.074, 5.340±0.108, 6.040±0.171 and 7.068±0.259, respectively, with significant differences among groups (F=274.67, P<0.0001). Compared with the corresponding control group, KIF18A overexpression promoted cell proliferation (t=5.450, P=0.031), whereas KIF18A knockdown had no significant effect on cell proliferation (t=1.708, P=0.163). Cell proliferation was significantly inhibited by the KIF18A inhibitor Sovilesib at a concentration of 18.77 μmol/L. KIF18A overexpression mainly suppressed early apoptosis (P<0.05), while KIF18A knockdown increased the overall apoptotic level (P<0.001). In the overexpression group, the migration rate of H23570 cells was significantly higher than that of the overexpression NC group [(80.18±2.96) % vs (38.18±4.32) %, t=13.901, P<0.001]. KIF18A knockdown did not significantly affect cell migration ability initially, but after 72 hours, the migration ability of TNBC cells with KIF18A knockdown was significantly lower than that of knockdown NC group (P<0.001). KIF18A overexpression enhanced cell invasion ability (t=29.502, P<0.001), while KIF18A knockdown exerted an inhibitory effect on cell invasion (t=20.210, P<0.001). Western blot results demonstrated that compared with the control group, KIF18A overexpression upregulated the expression levels of mTOR, PD-L1, and CDK4 (t=7.471, 9.729, 4.064, all P<0.05) and downregulated PARP1 expression (t=12.310, P<0.05) in the H23570 group. Conversely, KIF18A knockdown reduced the expression levels of mTOR, PI3K, Akt, PD-L1, Cyclin D1, and CDK4 (t=2.792, 6.035, 4.091, 15.750, 12.940, 3.979, all P<0.05) in the Y20559 group.

Conclusion

High expression of KIF18A is correlated with poor prognosis and malignant biological behaviors of TNBC, and KIF18A may play its role by regulating the expression of proteins such as CDK4/cyclin D1.

表1 不同KIF18A 表达的三阴性乳腺癌患者的临床病理特征比较
图1 138例三阴性乳腺癌患者的总生存曲线 注:HR=4.330,95%CI:2.277~6.252,P<0.001
图2 干扰KIF18A对MDA-MB-468细胞144 h内迁移能力的影响 A 图为倒置显微镜下记录细胞的迁移情况(×100); B图为干扰IF18A对细胞迁移能力的影响 注:a表示P<0.05
表2 138例三阴性乳腺癌患者总生存率的影响因素分析
表3 过表达和干扰KIF18A对不同时期乳腺癌细胞凋亡率的影响(
±s
表4 过表达和干扰KIF18A对TNBC细胞相关信号蛋白的影响
图3 过表达和干扰KIF18A对TNBC细胞相关信号蛋白的影响 注:a为过表达NC组,b为H23570组,c为干扰NC组,d为Y20559组;GAPDH为甘油醛-3-磷酸脱氢酶;TNBC为三阴性乳腺癌
[1]
Giaquinto ANSung HNewman LA,et al. Breast cancer statistics 2024 [J]. CA Cancer J Clin202474(6):477-495.
[2]
Qari ASMowais AHAlharbi SM,et al. Adjuvant and neoadjuvant therapy for breast cancer:a systematic review [J]. Eur J Breast Health202420(3):156-166.
[3]
Wu YHuang SWei Y,et al. Efficacy and safety of different regimens of neoadjuvant therapy in patients with hormone receptor-positive,her2-negative breast cancer:a network meta-analysis [J]. Front Immunol202415:1420214.
[4]
Xi YZhou SLong J,et al. Construction of polypyrrole nanoparticles with a rough surface for enhanced chemo-photothermal therapy against triple negative breast cancer [J]. Nanoscale Adv20246(21):5313-5321.
[5]
Bizuayehu HMBelachew SAJahan S,et al. Utilisation of endocrine therapy for cancer in Indigenous peoples:a systematic review and meta-analysis [J]. BMC Cancer202424(1):882.
[6]
Arvandi SRazmjoo SZaheri Abdevand P. Risk factors and survival of triple-negative breast cancer among breast cancer patients:ten-year cross-sectional study in the southwestern Iranian population [J]. Health Sci Rep20236(12):e1767.
[7]
Rizzo ASchipilliti FMDi Costanzo F,et al. Discontinuation rate and serious adverse events of chemoimmunotherapy as neoadjuvant treatment for triple-negative breast cancer:a systematic review and meta-analysis [J]. ESMO Open20238(6):102198.
[8]
廖仕翀,喻莉,李金芯,等. 三阴性乳腺癌的临床特点及治疗进展[J/OL]. 中华乳腺病杂志(电子版)20126(1):91-97.
[9]
Mazzeo RSears JPalmero L,et al. Liquid biopsy in triple-negative breast cancer:unlocking the potential of precision oncology [J]. ESMO Open20249(10):103700.
[10]
Tamayo NABourbeau MPAllen JR,et al. Targeting the mitotic kinesin KIF18A in chromosomally unstable cancers:hit optimization toward an in vivo chemical probe [J]. J Med Chem202265(6):4972-4990.
[11]
Chen QLe XLi QLiu SChen Z. Exploration of inhibitors targeting KIF18A with ploidy-specific lethality [J]. Drug Discov Today202429(10):104142.
[12]
Payton MBelmontes BHanestad K,et al. Small-molecule inhibition of kinesin KIF18A reveals a mitotic vulnerability enriched in chromosomally unstable cancers [J]. Nature Cancer20235(1):66-84.
[13]
Payton MBelmontes BHanestad K,et al. Small-molecule inhibition of kinesin KIF18A reveals a mitotic vulnerability enriched in chromosomally unstable cancers [J]. Nat Cancer20245(1):66-84.
[14]
Ren JYao XYang M,et al. Kinesin family member-18A (KIF18A) promotes cell proliferation and metastasis in hepatocellular carcinoma [J]. Dig Dis Sci202469(4):1274-1286.
[15]
周丹,许鹏程,张敏,等. 色素上皮衍生因子通过调控上皮间质转化抑制乳腺癌细胞侵袭和转移 [J]. 南方医科大学学报201838(1):1-7.
[16]
Payton MBelmontes BHanestad K,et al. Small-molecule inhibition of kinesin KIF18A reveals a mitotic vulnerability enriched in chromosomally unstable cancers [J]. Nat Cancer20245(1):66-84.
[17]
Zhang HShen TZhang Z,et al. Expression of KIF18A is associated with increased tumor stage and cell proliferation in prostate cancer [J]. Med Sci Monit201925:6418-6428.
[18]
Janssen LMEAverink TVBlomen VA,et al. Loss of KIF18A results in spindle assembly checkpoint activation at microtubule-attached kinetochores [J]. Curr Biol201828(17):2685-2696. e4.
[19]
杨飏,陈福涛,钟富宽,等. aKinesin家族成员18A在肺腺癌进展中的作用[J/OL]. 中华老年病研究电子杂志20207(4):21-26.
[20]
Schutt KLQueen KAFisher K,et al. Identification of the KIF18A alpha-4 helix as a therapeutic target for chromosomally unstable tumor cells [J]. Front Mol Biosci202411:1328077.
[21]
Alfarsi LHElansari RToss MS,et al. Kinesin family member-18A (KIF18A) is a predictive biomarker of poor benefit from endocrine therapy in early ER+ breast cancer [J]. Breast Cancer Res Treat2019173(1):93-102.
[22]
韩逸群,王佳玉,徐兵河. 晚期三阴性乳腺癌免疫检查点抑制剂联合靶向治疗进展[J/OL]. 中华乳腺病杂志(电子版)202014(5):261-265.
[23]
Marquis CFonseca CLQueen KA,et al. Chromosomally unstable tumor cells specifically require KIF18A for proliferation [J]. Nat Commun202112(1):1213.
[24]
Hosea RHillary SNaqvi S,et al. The two sides of chromosomal instability:drivers and brakes in cancer [J]. Signal Transduct Target Ther20249(1):75.
[25]
Fonseca CLMalaby HLHSepaniac LA,et al. Mitotic chromosome alignment ensures mitotic fidelity by promoting interchromosomal compaction during anaphase [J]. J Cell Biol2019218(4):1148-1163.
[26]
Janssen LMEAverink TVBlomen VA,et al. Loss of Kif18A results in spindle assembly checkpoint activation at microtubule-attached kinetochores [J]. Curr Biol201828(17):2685-2696.
[27]
Zhong YJiang LLin H,et al. Overexpression of KIF18A promotes cell proliferation,inhibits apoptosis,and independently predicts unfavorable prognosis in lung adenocarcinoma [J]. IUBMB Life201971(7):942-955.
[28]
Mohd Amin ASEastwood SPilcher C,et al. KIF18A inhibition:the next big player in the search for cancer therapeutics [J]. Cancer Metastasis Rev202444(1):3.
[29]
Feng JHou YLiu C,et al. IGLL5 has potential to be a prognostic biomarker and its correlation with immune infiltrates in breast cancer [J]. Am J Clin Exp Immunol202514(3):111-126.
[30]
Wang LBZhang XB,et al. The proliferation of glioblastoma is contributed to kinesin family member 18A and medical data analysis of GBM [J]. Front Genet202213:858882.
[31]
Qian LXCao XDu MY,et al. KIF18A knockdown reduces proliferation,migration,invasion and enhances radiosensitivity of esophageal cancer [J]. Biochem Biophys Res Commun2021557:192-198.
[32]
Liu YSun MZhang B,et al. KIF18A improves migration and invasion of colorectal cancer (CRC) cells through inhibiting PTEN signaling [J]. Aging (Albany NY)202315(17):9182-9192.
[33]
Häfner JMayr MIMöckel MM,et al. Pre-anaphase chromosome oscillations are regulated by the antagonistic activities of Cdk1 and PP1 on Kif18A [J]. Nat Commun20145:4397.
[34]
Turner NCLiu YZhu Z,et al. Cyclin E1 expression and palbociclib efficacy in previously treated hormone receptor-positive metastatic breast cancer [J]. J Clin Oncol201937(14):1169-1178.
[35]
Piezzo MCocco SCaputo R,et al. Targeting cell cycle in breast cancer:CDK4/6 inhibitors [J]. Int J Mol Sci202021(18):6479.
[36]
Stumpff Jvon Dassow GWagenbach M,et al. The kinesin-8 motor KIF18A suppresses kinetochore movements to control mitotic chromosome alignment [J]. Dev Cell200814(2):252-262.
[37]
Serpico F APisauro CTrano A,et al. Chromosome alignment and Kif18A action rely on spindle-localized control of CDK1 activity [J]. Front Cell Dev Biol202412:1490781.
[38]
DTripathy DBardia ASellers WR. Ribociclib (LEE011):mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors [J]. Clin Cancer Res201723(13):3251-3262.
[39]
Sofi SMehraj UQayoom H,et al. Cyclin-dependent kinases in breast cancer:expression pattern and therapeutic implications [J]. Med Oncol202239(6):106.
[40]
Ding LCao JLin W,et al. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer [J]. Int J Mol Sci202021(6):1960.
[41]
Zhang HXia TXia Z,et al. KIF18A inactivates hepatic stellate cells and alleviates liver fibrosis through the TTC3/Akt/mTOR pathway[J]. Cell Mol Life Sci202481(1):96.
[42]
Roberts PJKumarasamy VWitkiewicz AK,et al. Chemotherapy and CDK4/6 inhibitors:unexpected bedfellows [J]. Mol Cancer Ther202019(8):1575-1588.
[43]
Cai ZWang JLi Y,et al. Overexpressed cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors [J]. Sci China Life Sci202366(1):94-109.
[44]
Liu TYang KChen J,et al. Comprehensive pan-cancer analysis of KIF18A as a marker for prognosis and immunity [J]. Biomolecules202313(2):326.
[45]
Phillips AFZhang RJaffe M,et al. Targeting chromosomally unstable tumors with a selective KIF18A inhibitor [J]. Nat Commun202516(1):307.
[46]
Richardson TEWalker JMAbdullah KG,et al. Chromosomal instability in adult-type diffuse gliomas [J]. Acta Neuropathol Commun202210(1):115.
[47]
Cai ZWang JLi Y,et al. Overexpressed cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors [J]. Sci China Life Sci202366(1):94-109.
[48]
Leung JHLeung HWCWang SY,et al. Efficacy and safety of CDK4/6 and PI3K/AKT/mTOR inhibitors as second-line treatment in postmenopausal patients with hormone receptor-positive,HER-2-negative metastatic breast cancer:a network meta-analysis [J]. Expert Opin Drug Saf202120(8):949-957.
[49]
Tong LYu XWang S,et al. Research progress on molecular subtyping and modern treatment of triple-negative breast cancer [J]. Breast Cancer (Dove Med Press)202315:647-658.
[1] 中华医学会超声医学分会, 中国研究型医院肿瘤介入治疗委员会, 中国妇幼保健协会乳腺保健专业委员会, 中华医学会肿瘤学分会乳腺癌专业委员会, 中国抗癌协会乳腺癌专业委员会, 中国人体健康科技促进会乳腺专业委员会. 无手术适应证乳腺癌消融治疗专家共识(2025版)[J/OL]. 中华乳腺病杂志(电子版), 2026, 20(01): 1-8.
[2] 陈阔, 齐晓伟, 宋达疆, 吕鹏威. 机器人技术在乳腺外科的临床应用[J/OL]. 中华乳腺病杂志(电子版), 2026, 20(01): 9-15.
[3] 深圳市医学会乳腺病学分会, 深圳市医学会肿瘤学分会, 深圳市医师协会乳腺专科医师分会, 深圳市健康管理协会乳房健康与康复管理专业委员会, 深圳市抗癌协会乳腺癌专业委员会, 深圳市抗癌协会肿瘤放射治疗专业委员会, 深圳市中西医结合学会甲状腺乳腺病专业委员会. 乳腺癌新辅助治疗的疗效预测和疗效评价专家共识(2025版)[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 321-330.
[4] 李雨秋, 莫红楠. 乳腺癌肿瘤微环境特征及免疫治疗新进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 331-338.
[5] 金烨莹, 王艺璇, 杨瑞. 基于单细胞RNA测序的乳腺癌肿瘤相关巨噬细胞亚群鉴定与临床预后分析[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 339-347.
[6] 王天艺, 李筝, 许锐. 激素受体阳性/HER-2阴性早期乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 352-357.
[7] 刘锦婷, 梁高强, 李文涛. 乳房切除术后感觉功能重建的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 358-361.
[8] 邓宝, 郭子琳, 仲雷. 乳腺癌治疗中的铁死亡机制与铁基纳米材料应用进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 362-368.
[9] 樊晓宇, 刘风侠, 马力. 年轻乳腺癌患者养育忧虑的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 369-372.
[10] 谭路露, 李梦冉, 张晓莹, 唐立华, 谭宇彦. 原发性乳腺癌术后小肠转移一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 373-376.
[11] 杨晶, 高洁, 李淑琴, 夏铀铀. 同时性双侧乳腺癌一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 377-380.
[12] 罗仲燃, 曾智豪, 黄梦娟, 何晓艺. 乳腺癌术后腋窝淋巴结负荷的多因素分析及预测模型的建立及验证[J/OL]. 中华普外科手术学杂志(电子版), 2026, 20(01): 46-50.
[13] 王达, 朱建敏. 血小板/淋巴细胞计数比值对乳腺癌新辅助化疗疗效的预测效能[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 650-653.
[14] 马超, 王传嘉, 张武坊. 经腋窝入路单孔腔镜保乳术与传统开放手术治疗早期乳腺癌的对比研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 674-677.
[15] 刘辉, 谢周洲, 周晓琪, 张桂豪, 江惠明, 陈南辉. 靶向SOAT1对前列腺癌的作用和机制研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 95-101.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?