切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 175 -179. doi: 10.3877/cma.j.issn.1674-0807.2024.03.007

综述

乳酸脱氢酶A在乳腺癌中的作用
刘世佳1, 陶新楠1, 史晋宇1, 吕文豪1, 张亚芬1,()   
  1. 1. 030001 太原,山西医科大学附属第五临床医学院乳腺外科
  • 收稿日期:2022-11-25 出版日期:2024-06-01
  • 通信作者: 张亚芬

Role of lactate dehydrogenase A in breast cancer

Shijia Liu, Xinnan Tao, Jinyu Shi   

  • Received:2022-11-25 Published:2024-06-01
引用本文:

刘世佳, 陶新楠, 史晋宇, 吕文豪, 张亚芬. 乳酸脱氢酶A在乳腺癌中的作用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(03): 175-179.

Shijia Liu, Xinnan Tao, Jinyu Shi. Role of lactate dehydrogenase A in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(03): 175-179.

乳腺癌是具有高度异质性和复杂性的代谢疾病,主要通过Warburg效应进行细胞代谢重编程。乳酸脱氢酶A是Warburg效应的关键酶,在乳腺癌增殖、迁移、酸性微环境形成、免疫逃逸等方面发挥着关键作用。因此,笔者就乳酸脱氢酶A的结构、位置、功能及其在乳腺癌中的作用机制进行总结,着重讨论其在乳腺癌临床诊断、治疗和预后中的潜在意义,并提出乳酸脱氢酶A可作为抑制乳腺癌增殖和侵袭的新靶点。

[1]
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl)2022135(5):584-590.
[2]
Lei S, Zheng R, Zhang S, et al. Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020[J]. Cancer Commun (Lond)202141(11):1183-1194.
[3]
Warburg O. On respiratory impairment in cancer cells[J]. Science1956124(3215):269-270.
[4]
Draoui N, Feron O. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments[J]. Dis Model Mech20114(6):727-732.
[5]
Rizwan A, Serganova I, Khanin R, et al. Relationships between LDH-A, lactate, and metastases in 4T1 breast tumors[J]. Clin Cancer Res201319(18):5158-5169.
[6]
Naik A, Decock J. Lactate metabolism and immune modulation in breast cancer: a focused review on triple negative breast tumors[J]. Front Oncol202010:598626.
[7]
Read JA, Winter VJ, Eszes CM, et al. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase[J]. Proteins200143(2):175-185.
[8]
Kanno T, Sudo K, Kitamura M, et al. Lactate dehydrogenase A-subunit and B-subunit deficiencies: comparison of the physiological roles of LDH isozymes[J]. Isozymes Curr Top Biol Med Res19837:131-150.
[9]
Everse J, Kaplan NO. Lactate dehydrogenases: structure and function[J]. Adv Enzymol Relat Areas Mol Biol197337:61-133.
[10]
Tsujibo H, Tiano HF, Li SS. Nucleotide sequences of the cDNA and an intronless pseudogene for human lactate dehydrogenase-A isozyme[J]. Eur J Biochem1985147(1):9-15.
[11]
Grosse F, Nasheuer HP, Scholtissek S, et al. Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase complex[J]. Eur J Biochem1986160(3):459-467.
[12]
Semenza GL, Jiang BH, Leung SW, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1[J]. J Biol Chem1996271(51):32529-32537.
[13]
Shim H, Dolde C, Lewis BC, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth[J]. Proc Natl Acad Sci U S A199794(13):6658-6663.
[14]
Li X, Qin C, Burghardt R, et al. Hormonal regulation of lactate dehydrogenase-A through activation of protein kinase C pathways in MCF-7 breast cancer cells[J]. Biochem Biophys Res Commun2004320(3):625-634.
[15]
He L, Lv S, Ma X, et al. ErbB2 promotes breast cancer metastatic potential via HSF1/LDHA axis-mediated glycolysis[J]. Med Oncol202239(4):45.
[16]
Zhang L, Fu Y, Guo H. c-Myc-induced long non-coding RNA small nucleolar RNA host gene 7 regulates glycolysis in breast cancer[J]. J Breast Cancer201922(4):533-547.
[17]
Zhang L, Chen W, Liu S, et al. Targeting breast cancer stem cells[J]. Int J Biol Sci202319(2):552-570.
[18]
Chen C, Bai L, Cao F, et al. Targeting LIN28B reprograms tumor glucose metabolism and acidic microenvironment to suppress cancer stemness and metastasis[J]. Oncogene201938(23):4527-4539.
[19]
Wang S, Ma L, Wang Z, et al. Lactate dehydrogenase-A (LDH-A) preserves cancer stemness and recruitment of tumor-associated macrophages to promote breast cancer progression[J]. Front Oncol202111:654452.
[20]
Wang ZY, Loo TY, Shen JG, et al. LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis[J]. Breast Cancer Res Treat2012131(3):791-800.
[21]
Arseneault R, Chien A, Newington JT, et al. Attenuation of LDHA expression in cancer cells leads to redox-dependent alterations in cytoskeletal structure and cell migration[J]. Cancer Lett2013338(2):255-266.
[22]
Wu H, Wang Y, Ying M, et al. Lactate dehydrogenases amplify reactive oxygen species in cancer cells in response to oxidative stimuli[J]. Signal Transduct Target Ther20216(1):242.
[23]
Brooks GA. The science and translation of lactate shuttle theory[J]. Cell Metab201827(4):757-785.
[24]
Lin S, Sun L, Lyu X, et al. Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: a positive metabolic feedback loop[J]. Oncotarget20178(66):110426-110443.
[25]
Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J]. Pharmacol Ther2020206:107451.
[26]
Mu X, Shi W, Xu Y, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer[J]. Cell Cycle201817(4):428-438.
[27]
Khajah MA, Khushaish S, Luqmani YA. Lactate dehydrogenase A or B knockdown reduces lactate production and inhibits breast cancer cell motility in vitro[J]. Front Pharmacol202112:747001.
[28]
Apostolova P, Pearce EL. Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment[J]. Trends Immunol202243(12):969-977.
[29]
Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy[J]. Front Immunol202213:888713.
[30]
Santoni M, Romagnoli E, Saladino T, et al. Triple negative breast cancer: key role of tumor-associated macrophages in regulating the activity of anti-PD-1/PD-L1 agents[J]. Biochim Biophys Acta Rev Cancer20181869(1):78-84.
[31]
Chen P, Zuo H, Xiong H, et al. Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis[J]. Proc Natl Acad Sci U S A2017114(3):580-585.
[32]
Lim SO, Li CW, Xia W, et al. EGFR signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape[J]. Cancer Res201676(5):1284-1296.
[33]
Erra DF, Ochoa V, Merlotti A, et al. Extracellular acidosis and mTOR inhibition drive the differentiation of human monocyte-derived dendritic cells[J]. Cell Rep202031(5):107613.
[34]
Long Y, Gao Z, Hu X, et al. Downregulation of MCT4 for lactate exchange promotes the cytotoxicity of NK cells in breast carcinoma[J]. Cancer Med20187(9):4690-4700.
[35]
Xia C, Li M, Ran G, et al. Redox-responsive nanoassembly restrained myeloid-derived suppressor cells recruitment through autophagy-involved lactate dehydrogenase A silencing for enhanced cancer immunochemotherapy[J]. J Control Release2021335:557-574.
[36]
Kumagai S, Koyama S, Itahashi K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments[J]. Cancer Cell202240(2):201-218.
[37]
Liu J, Zhang C, Zhang T, et al. Metabolic enzyme LDHA activates Rac1 GTPase as a noncanonical mechanism to promote cancer[J]. Nat Metab20224(12):1830-1846.
[38]
Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic[J]. Nat Med201319(11):1450-1464.
[39]
Talaiezadeh A, Shahriari A, Tabandeh MR, et al. Kinetic characterization of lactate dehydrogenase in normal and malignant human breast tissues[J]. Cancer Cell Int201515:19.
[40]
Mehdi M, Menon M, Seyoum N, et al. Blood and tissue enzymatic activities of GDH and LDH, index of glutathione, and oxidative stress among breast cancer patients attending referral hospitals of addis ababa, ethiopia: hospital-based comparative cross-sectional study[J]. Oxid Med Cell Longev20182018:6039453.
[41]
Brown JE, Cook RJ, Lipton A, et al. Serum lactate dehydrogenase is prognostic for survival in patients with bone metastases from breast cancer: a retrospective analysis in bisphosphonate-treated patients[J]. Clin Cancer Res201218(22):6348-6355.
[42]
Liu D, Wang D, Wu C, et al. Prognostic significance of serum lactate dehydrogenase in patients with breast cancer: a meta-analysis[J]. Cancer Manag Res201911:3611-3619.
[43]
Ma YY, Wang H, Zhao WD, et al. Prognostic value of combined lactate dehydrogenase, C-reactive protein, cancer antigen 153 and cancer antigen 125 in metastatic breast cancer[J]. Cancer Control202229:1399496098.
[44]
Terpos E, Katodritou E, Roussou M, et al. High serum lactate dehydrogenase adds prognostic value to the international myeloma staging system even in the era of novel agents[J]. Eur J Haematol201085(2):114-119.
[45]
Chen B, Dai D, Tang H, et al. Pre-treatment serum alkaline phosphatase and lactate dehydrogenase as prognostic factors in triple negative breast cancer[J]. J Cancer20167(15):2309-2316.
[46]
Pelizzari G, Basile D, Zago S, et al. Lactate dehydrogenase (LDH) response to first-line treatment predicts survival in metastatic breast cancer: first clues for a cost-effective and dynamic biomarker[J]. Cancers (Basel)201911(9):1243.
[47]
Xiao X, Huang X, Ye F, et al. The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer[J]. Sci Rep20166:21735.
[48]
Dong T, Liu Z, Xuan Q, et al. Tumor LDH-A expression and serum LDH status are two metabolic predictors for triple negative breast cancer brain metastasis[J]. Sci Rep20177(1):6069.
[49]
Liu X, Meng QH, Ye Y, et al. Prognostic significance of pretreatment serum levels of albumin, LDH and total bilirubin in patients with non-metastatic breast cancer[J]. Carcinogenesis201536(2):243-248.
[50]
Robain M, Pierga JY, Jouve M, et al. Predictive factors of response to first-line chemotherapy in 1426 women with metastatic breast cancer[J]. Eur J Cancer200036(18):2301-2312.
[51]
Jia Z, Zhang J, Wang Z, et al. An explorative analysis of the prognostic value of lactate dehydrogenase for survival and the chemotherapeutic response in patients with advanced triple-negative breast cancer[J]. Oncotarget20189(12):10714-10722.
[52]
Zhou M, Zhao Y, Ding Y, et al. Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol[J]. Mol Cancer20109:33.
[53]
Govoni M, Rossi V, Di Stefano G, et al. Lactate upregulates the expression of DNA repair genes, causing intrinsic resistance of cancer cells to cisplatin[J]. Pathol Oncol Res202127:1609951.
[54]
Das CK, Parekh A, Parida PK, et al. Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer[J]. Biochim Biophys Acta Mol Cell Res20191866(6):1004-1018.
[55]
Chen X, Luo R, Zhang Y, et al. Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer[J]. Nat Commun202213(1):7160.
[56]
Zhao Y, Liu H, Liu Z, et al. Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism[J]. Cancer Res201171(13):4585-4597.
[57]
Yang T, Fu Z, Zhang Y, et al. Serum proteomics analysis of candidate predictive biomarker panel for the diagnosis of trastuzumab-based therapy resistant breast cancer[J]. Biomed Pharmacother2020129:110465.
[58]
Li L, Ai L, Jia L, et al. High score of LDH plus dNLR predicts poor survival in patients with HER2-positive advanced breast cancer treated with trastuzumab emtansine[J]. BMC Cancer202222(1):29.
[59]
Koukourakis MI, Kakouratos C, Kalamida D, et al. Hypoxia-inducible proteins HIF1α and lactate dehydrogenase LDH5, key markers of anaerobic metabolism, relate with stem cell markers and poor post-radiotherapy outcome in bladder cancer[J]. Int J Radiat Biol201692(7):353-363.
[60]
Schwab M, Thunborg K, Azimzadeh O, et al. Targeting cancer metabolism breaks radioresistance by impairing the stress response[J]. Cancers (Basel)202113(15).
[61]
Zhao Y, Zhong R, Deng C, et al. Circle RNA circABCB10 modulates PFN2 to promote breast cancer progression, as well as aggravate radioresistance through facilitating glycolytic metabolism via miR-223-3p[J]. Cancer Biother Radiopharm202136(6):477-490.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?