切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 301 -304. doi: 10.3877/cma.j.issn.1674-0807.2023.05.008

综述

乳腺癌瘤周影像组学研究进展
吴佩琪()   
  1. 518081 深圳,南方科技大学盐田医院/深圳市盐田区人民医院放射科
  • 收稿日期:2022-06-28 出版日期:2023-10-01
  • 通信作者: 吴佩琪
  • 基金资助:
    广东省医学科学技术研究基金项目(B2022071); 深圳市科技计划项目(JCYJ20210324132809023); 深圳市盐田区软科学研究及社会公益性项目(YTWS20200204)

Peritumoral radiomics of breast cancer

Peiqi Wu()   

  • Received:2022-06-28 Published:2023-10-01
  • Corresponding author: Peiqi Wu
引用本文:

吴佩琪. 乳腺癌瘤周影像组学研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 301-304.

Peiqi Wu. Peritumoral radiomics of breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(05): 301-304.

乳腺癌严重危害女性健康,影像学检查是实现乳腺癌早期发现、早期诊断的重要手段。影像组学通过提取医学影像的高通量特征并进行定量分析,在乳腺癌研究领域得到了广泛应用。随着研究的深入,瘤周影像组学特征中蕴含的肿瘤微环境相关信息逐渐受到重视。近年来,研究者将瘤周影像组学特征纳入到乳腺癌相关影像组学研究中,并取得了较好的成果。本文旨在对瘤周影像组学在乳腺癌良恶性病变鉴别、分子标志物和分子分型、新辅助治疗疗效及淋巴结转移预测等方面的研究进展进行总结,从而为乳腺癌患者的精准治疗提供思路。

[1]
Wild AE, Weiderpass E, Stewart BW, et al. World cancer report: Cancer research for cancer prevention [M]. Lyon: International Agency for Research on Cancer, 2020:25-26.
[2]
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019 [J]. CA Cancer J Clin, 201969(6):438-451.
[3]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in china, 2015 [J]. CA Cancer J Clin, 201666(2):115-132.
[4]
Xia C, Dong X, Li H, et al. Cancer statistics in china and united states, 2022: profiles, trends, and determinants [J]. Chin Med J (Engl), 2022135(5):584-590.
[5]
Ding R, Xiao Y, Mo M, et al. Breast cancer screening and early diagnosis in Chinese women [J]. Cancer Biol Med, 202219(4):450-467.
[6]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 201248(4):441-446.
[7]
Lambin P, Leijenaar R, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine [J]. Nat Rev Clin Oncol, 201714(12):749-762.
[8]
Paget S. The distribution of secondary growths in cancer of the breast. 1889 [J]. Cancer Metastasis Rev, 19898(2):98-101.
[9]
Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing [J]. N Engl J Med, 2012366(10):883-892.
[10]
Tekpli X, Lien T, Røssevold AH, et al. An independent poor-prognosis subtype of breast cancer defined by a distinct tumor immune microenvironment [J]. Nat Commun, 201910(1):5499.
[11]
Bennani-Baiti B, Pinker K, Zimmermann M, et al. Non-invasive assessment of hypoxia and neovascularization with MRI for identification of aggressive breast cancer [J]. Cancers, 202012(8):2024.
[12]
Braman N, Prasanna P, Whitney J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer [J]. JAMA Netw Open, 20192(4):e192561.
[13]
Zhou J, Zhang Y, Chang KT, et al. Diagnosis of benign and malignant breast lesions on dce-mri by using radiomics and deep learning with consideration of peritumor tissue [J]. J Magn Reson Imaging, 202051(3):798-809.
[14]
Lee HJ, Nguyen AT, Ki SY, et al. Classification of MR-detected additional lesions in patients with breast cancer using a combination of radiomics analysis and machine learning [J]. Front Oncol, 202111:744 460.
[15]
肖冰冰,袁刚,郑健,等. 基于融合双模态超声瘤内瘤周影像的乳腺肿瘤分类 [J]. 生物医学工程研究202140(2):138-143.
[16]
Li C, Song L, Yin J. Intratumoral and peritumoral radiomics based on functional parametric maps from breast DCE-MRI for prediction of HER-2 and Ki-67 status [J]. J Magn Reson Imaging, 202154(3):703-714.
[17]
Li C, Yin J. Radiomics nomogram based on radiomics score from multiregional diffusion-weighted MRI and clinical factors for evaluating HER-2 2+ status of breast cancer [J]. Diagnostics (Basel), 202111(8):1491.
[18]
Jiang T, Song J, Wang X, et al. Intratumoral and peritumoral analysis of mammography, tomosynthesis, and multiparametric MRI for predicting Ki-67 level in breast cancer: a radiomics-based study [J]. Mol Imaging Biol, 202224(4):550-559.
[19]
陆欢,葛敏,王世威,等. 动态增强MRI瘤内与瘤周影像组学特征对三阴性乳腺癌的诊断价值研究 [J]. 浙江医学202143(15):1647-1651; 1647-1651+1710.
[20]
李宝明. 基于影像组学的三阴性乳腺癌分子亚型预测[D]. 南京信息工程大学,2020.
[21]
Niu S, Jiang W, Zhao N, et al. Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI [J]. J Cancer Res Clin Oncol, 2022148(1):97-106.
[22]
Qi TH, Hian OH, Kumaran AM, et al. Multi-center evaluation of artificial intelligent imaging and clinical models for predicting neoadjuvant chemotherapy response in breast cancer [J]. Breast Cancer Res Treat, 2022193(1):121-138.
[23]
周佳丽. 基于MRI影像组学分析对乳腺癌新辅助化疗病理缓解早期术前预测[D]. 浙江中医药大学,2019.
[24]
Hussain L, Huang P, Nguyen T, et al. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response [J]. Biomed Eng Online, 202120(1):63.
[25]
Huang X, Mai J, Huang Y, et al. Radiomic nomogram for pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer: predictive value of staging contrast-enhanced CT [J]. Clin Breast Cancer, 202121(4):e388-e401.
[26]
Braman NM, Etesami M, Prasanna P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J]. Breast Cancer Res, 201719(1):57.
[27]
王雷. 基于影像组学的乳腺癌新辅助化疗疗效预测[D]. 南京:南京信息工程大学,2021.
[28]
Mao N, Shi Y, Lian C, et al. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography [J]. Eur Radiol, 202232(5):3207-3219.
[29]
Liu C, Ding J, Spuhler K, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI [J]. J Magn Reson Imaging, 2019, 49(1):131-140.
[30]
Ding J, Chen S, Serrano Sosa M, et al. Optimizing the peritumoral region size in radiomics analysis for sentinel lymph node status prediction in breast cancer [J]. Acad Radiol, 202229 Suppl 1(Suppl 1):S223-S228.
[31]
邓鹏飞. 基于DCE-MRI影像组学的乳腺癌区域淋巴结转移预测方法研究[D]. 西北大学,2020.
[32]
Sun Q, Lin X, Zhao Y, et al. Deep learning vs. Radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’t forget the peritumoral region [J]. Front Oncol, 202010:53.
[33]
Obeid JP, Stoyanova R, Kwon D, et al. Multiparametric evaluation of preoperative MRI in early stage breast cancer: prognostic impact of peri-tumoral fat[J]. Clin Transl Oncol, 201719(2):211-218.
[34]
Han X, Cao W, Wu L, et al. Radiomics assessment of the tumor immune microenvironment to predict outcomes in breast cancer [J]. Front Immunol, 202112:773581.
[35]
Yu F, Hang J, Deng J, et al. Radiomics features on ultrasound imaging for the prediction of disease-free survival in triple negative breast cancer: a multi-institutional study [J]. Br J Radiol, 202194(1126):20210188.
[36]
李晓虹. 基于MRI影像组学的乳腺癌远处转移风险评估模型构建与验证[D]. 南方医科大学,2021.
[37]
Xu H, Liu J, Chen Z, et al. Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer [J]. Eur Radiol, 202232(7):4845-4856.
[1] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[5] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[6] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[7] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[8] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[9] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[10] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[11] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[12] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[13] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要