切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 40 -43. doi: 10.3877/cma.j.issn.1674-0807.2023.01.008

综述

ESR1基因突变在雌激素受体阳性转移性乳腺癌中的研究进展
巨淑慧1, 庞嘉越成1, 皮浩1, 蒋英杰1, 李恒宇1, 盛湲1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院甲状腺乳腺外科
  • 收稿日期:2022-11-26 出版日期:2023-02-01
  • 通信作者: 盛湲

Role of ESR1 gene mutation in estrogen receptor-positive metastatic breast cancer

Shuhui Ju1, Jiayuecheng Pang1, Hao Pi1   

  • Received:2022-11-26 Published:2023-02-01
引用本文:

巨淑慧, 庞嘉越成, 皮浩, 蒋英杰, 李恒宇, 盛湲. ESR1基因突变在雌激素受体阳性转移性乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(01): 40-43.

Shuhui Ju, Jiayuecheng Pang, Hao Pi. Role of ESR1 gene mutation in estrogen receptor-positive metastatic breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2023, 17(01): 40-43.

乳腺癌是全球女性发病率最高的恶性肿瘤。内分泌治疗应用以来,很大程度上改善了ER阳性乳腺癌患者的预后,但内分泌治疗耐药导致的疾病进展成为亟待解决的突出问题。雌激素受体α基因1(ESR1)突变是ER阳性乳腺癌内分泌治疗耐药的主要驱动因素之一。本文总结了ESR1突变的特点及其在内分泌治疗耐药中的可能机制,并对相关临床研究数据进行了分析及总结,为临床医师的内分泌治疗选择提供参考。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
Samuel CA, Turner K, Donovan HAS, et al. Provider perspectives on barriers and facilitators to adjuvant endocrine therapy-related symptom management[J]. Support Care Cancer, 2017, 25(12): 3723-3731.
[3]
Hanker AB, Sudhan DR, Arteaga CL. Overcoming endocrine resistance in breast cancer[J]. Cancer Cell, 2020, 37(4): 496-513.
[4]
Jeselsohn R, Buchwalter G, De Angelis C, et al. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer[J]. Nat Rev Clin Oncol, 2015, 12(10): 573-583.
[5]
Razavi P, Chang MT, Xu G, et al. The genomic landscape of endocrine-resistant advanced breast cancers. [J]. Cancer Cell, 2018, 34(3): 427-438.
[6]
Schiavon G, Hrebien S, Garcia-Murillas I, et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer[J]. Sci Transl Med, 2015, 7(313): 313ra182.
[7]
Fribbens C, Garcia Murillas I, Beaney M, et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer[J]. Ann Oncol, 2018, 29(1): 145-153.
[8]
Clatot F, Perdrix A, Beaussire L, et al. Risk of early progression according to circulating ESR1 mutation, CA-15.3 and cfDNA increases under first-line anti-aromatase treatment in metastatic breast cancer[J]. Breast Cancer Res, 2020, 22(1): 56.
[9]
Zhang QX, Borg A, Wolf DM, et al. An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer[J]. Cancer Res, 1997, 57(7): 1244-1249.
[10]
Robinson DR, Wu YM, Vats P, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer[J]. Nat Genet, 2013, 45(12): 1446-1451.
[11]
Toy W, Shen Y, Won H, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer[J]. Nat Genet, 2013, 45(12): 1439-1445.
[12]
Jeselsohn R, Yelensky R, Buchwalter G, et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer[J]. Clin Cancer Res, 2014, 20(7): 1757-1767.
[13]
Toy W, Weir H, Razavi P, et al. Activating ESR1 mutations differentially affect the efficacy of ER antagonists[J]. Cancer Discov, 2017, 7(3): 277-287.
[14]
Hermida-Prado F, Jeselsohn R. The ESR1 mutations: from bedside to bench to bedside[J]. Cancer Res, 2021, 81(3): 537-538.
[15]
Li S, Shen D, Shao J, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts[J]. Cell Rep, 2013, 4(6): 1116-1130.
[16]
Fribbens C, O’Leary B, Kilburn L, et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer[J]. J Clin Oncol, 2016, 34(25): 2961-2968.
[17]
Kuang Y, Siddiqui B, Hu J, et al. Unraveling the clinicopathological features driving the emergence of ESR1 mutations in metastatic breast cancer[J]. NPJ Breast Cancer, 2018, 4: 22.
[18]
Gates LA, Gu G, Chen Y, et al. Proteomic profiling identifies key coactivators utilized by mutant ERα proteins as potential new therapeutic targets[J]. Oncogene, 2018, 37(33): 4581-4598.
[19]
Turner NC, Swift C, Kilburn L, et al. ESR1 mutations and overall survival on fulvestrant versus exemestane in advanced hormone receptor-positive breast cancer: A combined analysis of the phase Ⅲ SoFEA and EFECT trials[J]. Clin Cancer Res, 2020, 26(19): 5172-5177.
[20]
Jeselsohn R, De Angelis C, Brown M, et al. The evolving role of the estrogen receptor mutations in endocrine therapy-resistant breast cancer[J]. Curr Oncol Rep, 2017, 19(5): 35.
[21]
Najim O, Seghers S, Sergoynne L, et al. The association between type of endocrine therapy and development of estrogen receptor-1 mutation(s) in patients with hormone-sensitive advanced breast cancer: A systematic review and meta-analysis of randomized and non-randomized trials[J]. Biochim Biophys Acta Rev Cancer, 2019, 1872(2): 188 315.
[22]
De Santo I, McCartney A, Migliaccio I, et al. The emerging role of ESR1 mutations in luminal breast cancer as a prognostic and predictive biomarker of response to endocrine therapy[J]. Cancers (Basel), 2019, 11(12):1849.
[23]
O’Leary B, Cutts RJ, Liu Y, et al. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial[J]. Cancer Discov, 2018, 8(11): 1390-1403.
[24]
Chandarlapaty S, Chen D, He W, et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: A secondary analysis of the BOLERO-2 clinical trial[J]. JAMA Oncol, 2016, 2(10): 1310-1315.
[25]
Nettles KW, Bruning JB, Gil G, et al. NFkappaB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses[J]. Nat Chem Biol, 2008, 4(4): 241-247.
[26]
Gu G, Tian L, Herzog SK, et al. Hormonal modulation of ESR1 mutant metastasis[J]. Oncogene, 2021, 40(5): 997-1011.
[27]
Lefebvre C, Bachelot T, Filleron T, et al. Mutational profile of metastatic breast cancers: A retrospective analysis[J]. PLoS Med, 2016, 13(12): e1002201.
[28]
Clatot F, Perdrix A, Augusto L, et al. Kinetics, prognostic and predictive values of ESR1 circulating mutations in metastatic breast cancer patients progressing on aromatase inhibitor[J]. Oncotarget, 2016, 7(46): 74448-74459.
[29]
Puyang X, Furman C, Zheng GZ, et al. Discovery of selective estrogen receptor covalent antagonists for the treatment of ERα(WT) and ERα(MUT) breast cancer[J]. Cancer Discov, 2018, 8(9): 1176-1193.
[30]
Bahreini A, Li Z, Wang P, et al. Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models[J]. Breast Cancer Res, 2017, 19(1): 60.
[31]
Wardell SE, Ellis MJ, Alley HM, et al. Efficacy of SERD/SERM hybrid-CDK4/6 inhibitor combinations in models of endocrine therapy-resistant breast cancer[J]. Clin Cancer Res, 2015, 21(22): 5121-5130.
[32]
Turner NC, Kingston B, Kilburn LS, et al. Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): a multicentre, multicohort, phase 2a, platform trial[J]. Lancet Oncol, 2020, 21(10): 1296-1308.
[33]
Bidard FC, Kaklamani VG, Neven P, et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from the randomized phase Ⅲ EMERALD trial[J]. J Clin Oncol, 2022, 40(28): 3246-3256.
[34]
Jimenez MM, Lim E, Gregor MC, et al. Giredestrant (GDC-9545) vs physician choice of endocrine monotherapy (PCET) in patients (pts) with ER+,HER2- locally advanced/metastatic breast cancer (LA/mBC): primary analysis of the phase 2, randomised, open-label acelERA BC study [EB/OL]. [2022-11-25].

URL    
[35]
Tolaney SM, Chan A, Petrakova K, et al. AMEERA-3, a phase 2 study of amcenestrant (AMC) versus endocrine treatment of physician’s choice (TPC) in patients (pts) with endocrine-resistant ER+/HER2-advanced breast cancer (aBC) [EB/OL]. [2022-11-25].

URL    
[36]
Goetz MP, Plourde P, Stover DG, et al. Open-label, randomized study of lasofoxifene (LAS) vs fulvestrant (Fulv) for women with locally advanced/metastatic ER+/HER2- breast cancer (mBC), an estrogen receptor 1 (ESR1) mutation, and disease progression on aromatase (AI) and cyclin-dependent kinase 4/6 (CDK4/6i) inhibitors [EB/OL]. [2022-11-25].

URL    
[37]
Damodaran S, Plourde PV, Moore HCF, et al. Open-label, phase 2, multicenter study of lasofoxifene (LAS) combined with abemaciclib (Abema) for treating pre- and postmenopausal women with locally advanced or metastatic ER+/HER2-breast cancer and an ESR1 mutation after progression on prior therapies[J]. J Clin Oncol, 2022, 40(16_suppl): 1022-1022.
[38]
Furman C, Puyang X, Zhang Z, et al. Covalent ERα antagonist H3B-6545 demonstrates encouraging preclinical activity in therapy-resistant breast cancer[J]. Mol Cancer Ther, 2022, 21(6): 890-902.
[39]
Narasimha AM, Kaulich M, Shapiro GS, et al. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation[J]. Elife, 2014, 3: e02872.
[40]
Wander SA, Cohen O, Gong X, et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer[J]. Cancer Discov, 2020, 10(8): 1174-1193.
[41]
Bidard FC, Hardy-Bessard AC, Dalenc F, et al. Switch to fulvestrant and palbociclib versus no switch in advanced breast cancer with rising ESR1 mutation during aromatase inhibitor and palbociclib therapy (PADA-1): a randomised, open-label, multicentre, phase 3 trial[J]. Lancet Oncol, 2022, 23(11): 1367-1377.
[42]
Tolaney SM, Toi M, Neven P, et al. Clinical significance of PIK3CA and ESR1 mutations in circulating tumor DNA: Analysis from the MONARCH 2 study of abemaciclib plus fulvestrant[J]. Clin Cancer Res, 2022, 28(8): 1500-1506.
[43]
Moore HM, Savage HM, O’Brien C, et al. Predictive and pharmacodynamic biomarkers of response to the phosphatidylinositol 3-kinase inhibitor taselisib in breast cancer preclinical models[J]. Mol Cancer Ther, 2020, 19(1): 292-303.
[44]
Razavi P, Dickler MN, Shah PD, et al. Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors[J]. Nat Cancer, 2020, 1(4): 382-393.
[45]
Bardia A, Hurvitz SA, Demichele A, et al. Phase Ⅰ/Ⅱ trial of exemestane, ribociclib, and everolimus in women with HR(+)/HER2(-) advanced breast cancer after progression on CDK4/6 inhibitors (TRINITI-1)[J]. Clin Cancer Res, 2021, 27(15): 4177-4185.
[46]
Ladd B, Mazzola AM, Bihani T, et al. Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations[J]. Oncotarget, 2016, 7(34): 54 120-54 136.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[11] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[12] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[13] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[14] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[15] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
阅读次数
全文


摘要