切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (04) : 236 -239. doi: 10.3877/cma.j.issn.1674-0807.2022.04.007

综述

肿瘤细胞外基质对乳腺癌侵袭转移的调控
张俊慧1, 徐莉2, 吕青2, 谭秋雯2,()   
  1. 1. 610041 成都,四川大学华西医院乳腺外科;610044 成都,四川大学华西公共卫生学院/四川大学华西第四医院微创外科
    2. 610041 成都,四川大学华西医院乳腺外科
  • 收稿日期:2020-08-02 出版日期:2022-08-01
  • 通信作者: 谭秋雯
  • 基金资助:
    四川省科技计划资助项目(2019YJ0052、2019YFS0377)

Regulation of tumor extracellular matrix on invasion and metastasis of breast cancer

Junhui Zhang1, Li Xu2, Qing Lu2   

  • Received:2020-08-02 Published:2022-08-01
引用本文:

张俊慧, 徐莉, 吕青, 谭秋雯. 肿瘤细胞外基质对乳腺癌侵袭转移的调控[J/OL]. 中华乳腺病杂志(电子版), 2022, 16(04): 236-239.

Junhui Zhang, Li Xu, Qing Lu. Regulation of tumor extracellular matrix on invasion and metastasis of breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(04): 236-239.

乳腺癌是女性发病率最高的恶性肿瘤。除细胞外,肿瘤微环境在肿瘤发生、发展及治疗反应等重要生物学过程中的角色也逐渐被认识。细胞外基质(ECM)是组织微环境中的非细胞成分,具有独特的生理、生物化学及生物力学特性。近年来,研究发现:在乳腺癌发生、发展过程中,组织ECM发生显著重构,形成肿瘤ECM且影响肿瘤进展及转移过程。笔者就乳腺癌ECM重构及对肿瘤进展的影响进行综述。

[1]
Loibl S, Poortmans P, Morrow M, et al. Breast cancer[J]. Lancet, 2021397(10 286):1750-1769.
[2]
Brassart-Pasco S, Brézillon S, Brassart B, et al. Tumor microenvironment: extracellular matrix alterations influence tumor progression[J]. Front Oncol, 202010:397.
[3]
Petersen EV, Chudakova DA, Skorova EY, et al. The extracellular matrix-derived biomarkers for diagnosis, prognosis, and personalized therapy of malignant tumors[J]. Front Oncol202010:575 569.
[4]
Franchi M, Piperigkou Z, Karamanos KA, et al. Extracellular matrix-mediated breast cancer cells morphological alterations, invasiveness, and microvesicles/ exosomes release [J]. Cells, 2020, 9(9): 2031.
[5]
Poltavets V, Kochetkova M, Pitson SM, et al. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity[J]. Front Oncol, 20188:431.
[6]
Hu GF, Li LZ, Xu W. Extracellular matrix in mammary gland development and breast cancer progression[J]. Front Lab Med, 20171(1): 36-39.
[7]
Fleming JM, Yeyeodu ST, Mclaughlin A, et al. In situ drug delivery to breast cancer-associated extracellular matrix [J]. ACS Chemical Biology, 2018, 13(10):2825-2840.
[8]
Paolillo M, Schinelli S. Extracellular matrix alterations in metastatic processes[J]. Int J Mol Sci2019, 20(19):4947.
[9]
Nazari SS, Mukherjee P. An overview of mammographic density and its association with breast cancer [J]. Breast Cancer, 2018, 25(3): 259-267.
[10]
Giussani M, Merlino G, Cappelletti V, et al. Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression [J]. Semi Cancer Biol, 2015, 35:3-10.
[11]
Shenoy A, Belugali Nataraj N, Perry G, et al. Proteomic patterns associated with response to breast cancer neoadjuvant treatment[J]. Mol Syst Biol, 2020, 16(9):e9443.
[12]
Belgodere JA, King CT, Bursavich JB, et al. Engineering breast cancer microenvironments and 3D Bioprinting [J]. Front Bioeng Biotech, 2018, 6: 66.
[13]
Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside[J]. J Transl Med201917(1):309.
[14]
Wang K, Wu F, Seo BR, et al. Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions[J]. Matrix Bio, 201760(61):86-95.
[15]
Tomko LA, Hill RC, Barrett A, et al. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma[J]. Sci Rep, 20188(1):12 941.
[16]
Park J, Schwarzbauer JE. Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition[J]. Oncogene201433(13):1649-1657.
[17]
Emon B, Bauer J, Jain Y, et al. Biophysics of tumor microenvironment and cancer metastasis - a mini review[J]. Comput Struct Biotechnol J2018, 16:279-287.
[18]
Peretti M, Badaoui M, Girault A, et al. Original association of ion transporters mediates the ECM-induced breast cancer cell survival: Kv10.1-Orai1-SPCA2 partnership[J]. Sci Rep, 2019, 9(1):1175.
[19]
Hanker AB, Estrada MV, Bianchini G, et al. Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER-2 and PI3K in HER-2+ breast cancer[J]. Cancer Res201777(12):3280-3292.
[20]
Lv PC, Jiang AQ, Zhang WM, et al. FAK inhibitors in cancer, a patent review[J]. Expert Opin Ther Pat2018, 28(2):139-145.
[21]
Fernandez-Garcia B, Eiró N, Marín L, et al. Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis[J]. Histopathology201464(4):512-522.
[22]
Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature2005438 (7069):820-827.
[23]
Morais C, Small DM, Vesey DA, et al. Fibronectin and transforming growth factor beta contribute to erythropoietin resistance and maladaptive cardiac hypertrophy [J]. Biochem Biophys Res Commun, 2014, 444(3): 332-337.
[24]
Chang C, Goel HL, Gao H, et al. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells[J]. Genes Dev, 201529(1):1-6.
[25]
Carpenter PM, Sivadas P, Hua SS, et al. Migration of breast cancer cell lines in response to pulmonary laminin 332; implications for metastasis [J]. Cancer Med, 2017, 6(1):220-234.
[26]
Tiainen S, Masarwah A, Oikari S, et al. Tumor microenvironment and breast cancer survival: combined effects of breast fat, M2 macrophages and hyaluronan create a dismal prognosis [J]. Breast Cancer Res Treat, 2019, 179(3):565-575.
[27]
Velesiotis C, Vasileiou S, Vynios DH. A guide to hyaluronan and related enzymes in breast cancer: biological significance and diagnostic value [J]. FEBS J, 2019, 286(15):3057-3074.
[28]
Tsubaki M, Genno S, Takeda T, et al. Rhosin suppressed tumor cell metastasis through inhibition of Rho/YAP Pathway and expression of RHAMM and CXCR4 in melanoma and breast cancer cells[J]. Biomedicines2021, 9(1):35.
[29]
Singha NC, Nekoroski T, Zhao C, et al. Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy[J]. Mol Cancer Ther, 2015. 14(2): 523-532.
[30]
Clift R, Souratha J, Garrovillo SA, et al. Remodeling the tumor microenvironment sensitizes breast tumors to anti-programmed death-ligand 1 immunotherapy [J]. Cancer Res, 201979(16):4149-4159.
[31]
Gordon-Weeks A, Yuzhalin AE. Cancer extracellular matrix proteins regulate tumour immunity[J]. Cancers (Basel), 12(11):3331.
[32]
Wei J, Hu M, Huang K, et al. Roles of proteoglycans and glycosaminoglycans in cancer development and progression[J]. Int J Mol Sci2020, 21(17):5983.
[33]
Belli C, Trapani D, Viale G, et al. Targeting the microenvironment in solid tumors[J]. Cancer Treat Rev201865:22-32.
[34]
Roma-Rodrigues C, Mendes R, Baptista PV, et al. Targeting tumor microenvironment for cancer therapy[J]. Int J Mol Sci2019, 20(4):840.
[35]
Yamauchi M, Shiiba M. Lysine hydroxylation and cross-linking of collagen [J]. Methods Mol Biol, 2008, 446: 95-108.
[36]
Nedeljkovic′ M, Damjanovic′ A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge[J]. Cells20198(9):957.
[37]
Saatci O, Kaymak A, Raza U, et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer[J]. Nat Commun202011(1):2416.
[38]
Vallet SD, Ricard-Blum S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links[J]. Essays Biochem201963(3):349-364.
[39]
Chitty JL, Setargew YFI, Cox TR. Targeting the lysyl oxidases in tumour desmoplasia[J]. Biochem Soc Trans201947(6):1661-1678.
[40]
Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment[J]. Nat Med201016(9):1009-1017.
[41]
Chan N, Willis A, Kornhauser N, et al. Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases[J]. Clin Cancer Res201723(3):666-676.
[42]
Liu J, Liao S, Diopfrimpong B, et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma [J]. Proc Natl Acad Sci U S A, 2012, 109(41): 16 618-16 623.
[43]
Yao H, Veine DM, Livant DL. Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin [J]. Breast Cancer Res Treat, 2016, 157(3): 489-501.
[44]
Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization [J]. Nature2011481(7379):85-89.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[9] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[10] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[13] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[14] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[15] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?