切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (04) : 236 -239. doi: 10.3877/cma.j.issn.1674-0807.2022.04.007

综述

肿瘤细胞外基质对乳腺癌侵袭转移的调控
张俊慧1, 徐莉2, 吕青2, 谭秋雯2,()   
  1. 1. 610041 成都,四川大学华西医院乳腺外科;610044 成都,四川大学华西公共卫生学院/四川大学华西第四医院微创外科
    2. 610041 成都,四川大学华西医院乳腺外科
  • 收稿日期:2020-08-02 出版日期:2022-08-01
  • 通信作者: 谭秋雯
  • 基金资助:
    四川省科技计划资助项目(2019YJ0052、2019YFS0377)

Regulation of tumor extracellular matrix on invasion and metastasis of breast cancer

Junhui Zhang1, Li Xu2, Qing Lu2   

  • Received:2020-08-02 Published:2022-08-01
引用本文:

张俊慧, 徐莉, 吕青, 谭秋雯. 肿瘤细胞外基质对乳腺癌侵袭转移的调控[J]. 中华乳腺病杂志(电子版), 2022, 16(04): 236-239.

Junhui Zhang, Li Xu, Qing Lu. Regulation of tumor extracellular matrix on invasion and metastasis of breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(04): 236-239.

乳腺癌是女性发病率最高的恶性肿瘤。除细胞外,肿瘤微环境在肿瘤发生、发展及治疗反应等重要生物学过程中的角色也逐渐被认识。细胞外基质(ECM)是组织微环境中的非细胞成分,具有独特的生理、生物化学及生物力学特性。近年来,研究发现:在乳腺癌发生、发展过程中,组织ECM发生显著重构,形成肿瘤ECM且影响肿瘤进展及转移过程。笔者就乳腺癌ECM重构及对肿瘤进展的影响进行综述。

[1]
Loibl S, Poortmans P, Morrow M, et al. Breast cancer[J]. Lancet, 2021397(10 286):1750-1769.
[2]
Brassart-Pasco S, Brézillon S, Brassart B, et al. Tumor microenvironment: extracellular matrix alterations influence tumor progression[J]. Front Oncol, 202010:397.
[3]
Petersen EV, Chudakova DA, Skorova EY, et al. The extracellular matrix-derived biomarkers for diagnosis, prognosis, and personalized therapy of malignant tumors[J]. Front Oncol202010:575 569.
[4]
Franchi M, Piperigkou Z, Karamanos KA, et al. Extracellular matrix-mediated breast cancer cells morphological alterations, invasiveness, and microvesicles/ exosomes release [J]. Cells, 2020, 9(9): 2031.
[5]
Poltavets V, Kochetkova M, Pitson SM, et al. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity[J]. Front Oncol, 20188:431.
[6]
Hu GF, Li LZ, Xu W. Extracellular matrix in mammary gland development and breast cancer progression[J]. Front Lab Med, 20171(1): 36-39.
[7]
Fleming JM, Yeyeodu ST, Mclaughlin A, et al. In situ drug delivery to breast cancer-associated extracellular matrix [J]. ACS Chemical Biology, 2018, 13(10):2825-2840.
[8]
Paolillo M, Schinelli S. Extracellular matrix alterations in metastatic processes[J]. Int J Mol Sci2019, 20(19):4947.
[9]
Nazari SS, Mukherjee P. An overview of mammographic density and its association with breast cancer [J]. Breast Cancer, 2018, 25(3): 259-267.
[10]
Giussani M, Merlino G, Cappelletti V, et al. Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression [J]. Semi Cancer Biol, 2015, 35:3-10.
[11]
Shenoy A, Belugali Nataraj N, Perry G, et al. Proteomic patterns associated with response to breast cancer neoadjuvant treatment[J]. Mol Syst Biol, 2020, 16(9):e9443.
[12]
Belgodere JA, King CT, Bursavich JB, et al. Engineering breast cancer microenvironments and 3D Bioprinting [J]. Front Bioeng Biotech, 2018, 6: 66.
[13]
Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside[J]. J Transl Med201917(1):309.
[14]
Wang K, Wu F, Seo BR, et al. Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions[J]. Matrix Bio, 201760(61):86-95.
[15]
Tomko LA, Hill RC, Barrett A, et al. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma[J]. Sci Rep, 20188(1):12 941.
[16]
Park J, Schwarzbauer JE. Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition[J]. Oncogene201433(13):1649-1657.
[17]
Emon B, Bauer J, Jain Y, et al. Biophysics of tumor microenvironment and cancer metastasis - a mini review[J]. Comput Struct Biotechnol J2018, 16:279-287.
[18]
Peretti M, Badaoui M, Girault A, et al. Original association of ion transporters mediates the ECM-induced breast cancer cell survival: Kv10.1-Orai1-SPCA2 partnership[J]. Sci Rep, 2019, 9(1):1175.
[19]
Hanker AB, Estrada MV, Bianchini G, et al. Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER-2 and PI3K in HER-2+ breast cancer[J]. Cancer Res201777(12):3280-3292.
[20]
Lv PC, Jiang AQ, Zhang WM, et al. FAK inhibitors in cancer, a patent review[J]. Expert Opin Ther Pat2018, 28(2):139-145.
[21]
Fernandez-Garcia B, Eiró N, Marín L, et al. Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis[J]. Histopathology201464(4):512-522.
[22]
Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature2005438 (7069):820-827.
[23]
Morais C, Small DM, Vesey DA, et al. Fibronectin and transforming growth factor beta contribute to erythropoietin resistance and maladaptive cardiac hypertrophy [J]. Biochem Biophys Res Commun, 2014, 444(3): 332-337.
[24]
Chang C, Goel HL, Gao H, et al. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells[J]. Genes Dev, 201529(1):1-6.
[25]
Carpenter PM, Sivadas P, Hua SS, et al. Migration of breast cancer cell lines in response to pulmonary laminin 332; implications for metastasis [J]. Cancer Med, 2017, 6(1):220-234.
[26]
Tiainen S, Masarwah A, Oikari S, et al. Tumor microenvironment and breast cancer survival: combined effects of breast fat, M2 macrophages and hyaluronan create a dismal prognosis [J]. Breast Cancer Res Treat, 2019, 179(3):565-575.
[27]
Velesiotis C, Vasileiou S, Vynios DH. A guide to hyaluronan and related enzymes in breast cancer: biological significance and diagnostic value [J]. FEBS J, 2019, 286(15):3057-3074.
[28]
Tsubaki M, Genno S, Takeda T, et al. Rhosin suppressed tumor cell metastasis through inhibition of Rho/YAP Pathway and expression of RHAMM and CXCR4 in melanoma and breast cancer cells[J]. Biomedicines2021, 9(1):35.
[29]
Singha NC, Nekoroski T, Zhao C, et al. Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy[J]. Mol Cancer Ther, 2015. 14(2): 523-532.
[30]
Clift R, Souratha J, Garrovillo SA, et al. Remodeling the tumor microenvironment sensitizes breast tumors to anti-programmed death-ligand 1 immunotherapy [J]. Cancer Res, 201979(16):4149-4159.
[31]
Gordon-Weeks A, Yuzhalin AE. Cancer extracellular matrix proteins regulate tumour immunity[J]. Cancers (Basel), 12(11):3331.
[32]
Wei J, Hu M, Huang K, et al. Roles of proteoglycans and glycosaminoglycans in cancer development and progression[J]. Int J Mol Sci2020, 21(17):5983.
[33]
Belli C, Trapani D, Viale G, et al. Targeting the microenvironment in solid tumors[J]. Cancer Treat Rev201865:22-32.
[34]
Roma-Rodrigues C, Mendes R, Baptista PV, et al. Targeting tumor microenvironment for cancer therapy[J]. Int J Mol Sci2019, 20(4):840.
[35]
Yamauchi M, Shiiba M. Lysine hydroxylation and cross-linking of collagen [J]. Methods Mol Biol, 2008, 446: 95-108.
[36]
Nedeljkovic′ M, Damjanovic′ A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge[J]. Cells20198(9):957.
[37]
Saatci O, Kaymak A, Raza U, et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer[J]. Nat Commun202011(1):2416.
[38]
Vallet SD, Ricard-Blum S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links[J]. Essays Biochem201963(3):349-364.
[39]
Chitty JL, Setargew YFI, Cox TR. Targeting the lysyl oxidases in tumour desmoplasia[J]. Biochem Soc Trans201947(6):1661-1678.
[40]
Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment[J]. Nat Med201016(9):1009-1017.
[41]
Chan N, Willis A, Kornhauser N, et al. Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases[J]. Clin Cancer Res201723(3):666-676.
[42]
Liu J, Liao S, Diopfrimpong B, et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma [J]. Proc Natl Acad Sci U S A, 2012, 109(41): 16 618-16 623.
[43]
Yao H, Veine DM, Livant DL. Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin [J]. Breast Cancer Res Treat, 2016, 157(3): 489-501.
[44]
Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization [J]. Nature2011481(7379):85-89.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[13] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要