[1] |
Loibl S, Poortmans P, Morrow M, et al. Breast cancer[J]. Lancet, 2021,397(10 286):1750-1769.
|
[2] |
Brassart-Pasco S, Brézillon S, Brassart B, et al. Tumor microenvironment: extracellular matrix alterations influence tumor progression[J]. Front Oncol, 2020,10:397.
|
[3] |
Petersen EV, Chudakova DA, Skorova EY, et al. The extracellular matrix-derived biomarkers for diagnosis, prognosis, and personalized therapy of malignant tumors[J]. Front Oncol,2020,10:575 569.
|
[4] |
Franchi M, Piperigkou Z, Karamanos KA, et al. Extracellular matrix-mediated breast cancer cells morphological alterations, invasiveness, and microvesicles/ exosomes release [J]. Cells, 2020, 9(9): 2031.
|
[5] |
Poltavets V, Kochetkova M, Pitson SM, et al. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity[J]. Front Oncol, 2018,8:431.
|
[6] |
Hu GF, Li LZ, Xu W. Extracellular matrix in mammary gland development and breast cancer progression[J]. Front Lab Med, 2017,1(1): 36-39.
|
[7] |
Fleming JM, Yeyeodu ST, Mclaughlin A, et al. In situ drug delivery to breast cancer-associated extracellular matrix [J]. ACS Chemical Biology, 2018, 13(10):2825-2840.
|
[8] |
Paolillo M, Schinelli S. Extracellular matrix alterations in metastatic processes[J]. Int J Mol Sci,2019, 20(19):4947.
|
[9] |
Nazari SS, Mukherjee P. An overview of mammographic density and its association with breast cancer [J]. Breast Cancer, 2018, 25(3): 259-267.
|
[10] |
Giussani M, Merlino G, Cappelletti V, et al. Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression [J]. Semi Cancer Biol, 2015, 35:3-10.
|
[11] |
Shenoy A, Belugali Nataraj N, Perry G, et al. Proteomic patterns associated with response to breast cancer neoadjuvant treatment[J]. Mol Syst Biol, 2020, 16(9):e9443.
|
[12] |
Belgodere JA, King CT, Bursavich JB, et al. Engineering breast cancer microenvironments and 3D Bioprinting [J]. Front Bioeng Biotech, 2018, 6: 66.
|
[13] |
Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside[J]. J Transl Med,2019,17(1):309.
|
[14] |
Wang K, Wu F, Seo BR, et al. Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions[J]. Matrix Bio, 2017,60(61):86-95.
|
[15] |
Tomko LA, Hill RC, Barrett A, et al. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma[J]. Sci Rep, 2018,8(1):12 941.
|
[16] |
Park J, Schwarzbauer JE. Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition[J]. Oncogene,2014,33(13):1649-1657.
|
[17] |
Emon B, Bauer J, Jain Y, et al. Biophysics of tumor microenvironment and cancer metastasis - a mini review[J]. Comput Struct Biotechnol J,2018, 16:279-287.
|
[18] |
Peretti M, Badaoui M, Girault A, et al. Original association of ion transporters mediates the ECM-induced breast cancer cell survival: Kv10.1-Orai1-SPCA2 partnership[J]. Sci Rep, 2019, 9(1):1175.
|
[19] |
Hanker AB, Estrada MV, Bianchini G, et al. Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER-2 and PI3K in HER-2+ breast cancer[J]. Cancer Res,2017,77(12):3280-3292.
|
[20] |
Lv PC, Jiang AQ, Zhang WM, et al. FAK inhibitors in cancer, a patent review[J]. Expert Opin Ther Pat,2018, 28(2):139-145.
|
[21] |
Fernandez-Garcia B, Eiró N, Marín L, et al. Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis[J]. Histopathology,2014,64(4):512-522.
|
[22] |
Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature,2005,438 (7069):820-827.
|
[23] |
Morais C, Small DM, Vesey DA, et al. Fibronectin and transforming growth factor beta contribute to erythropoietin resistance and maladaptive cardiac hypertrophy [J]. Biochem Biophys Res Commun, 2014, 444(3): 332-337.
|
[24] |
Chang C, Goel HL, Gao H, et al. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells[J]. Genes Dev, 2015,29(1):1-6.
|
[25] |
Carpenter PM, Sivadas P, Hua SS, et al. Migration of breast cancer cell lines in response to pulmonary laminin 332; implications for metastasis [J]. Cancer Med, 2017, 6(1):220-234.
|
[26] |
Tiainen S, Masarwah A, Oikari S, et al. Tumor microenvironment and breast cancer survival: combined effects of breast fat, M2 macrophages and hyaluronan create a dismal prognosis [J]. Breast Cancer Res Treat, 2019, 179(3):565-575.
|
[27] |
Velesiotis C, Vasileiou S, Vynios DH. A guide to hyaluronan and related enzymes in breast cancer: biological significance and diagnostic value [J]. FEBS J, 2019, 286(15):3057-3074.
|
[28] |
Tsubaki M, Genno S, Takeda T, et al. Rhosin suppressed tumor cell metastasis through inhibition of Rho/YAP Pathway and expression of RHAMM and CXCR4 in melanoma and breast cancer cells[J]. Biomedicines,2021, 9(1):35.
|
[29] |
Singha NC, Nekoroski T, Zhao C, et al. Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy[J]. Mol Cancer Ther, 2015. 14(2): 523-532.
|
[30] |
Clift R, Souratha J, Garrovillo SA, et al. Remodeling the tumor microenvironment sensitizes breast tumors to anti-programmed death-ligand 1 immunotherapy [J]. Cancer Res, 2019,79(16):4149-4159.
|
[31] |
Gordon-Weeks A, Yuzhalin AE. Cancer extracellular matrix proteins regulate tumour immunity[J]. Cancers (Basel), 12(11):3331.
|
[32] |
Wei J, Hu M, Huang K, et al. Roles of proteoglycans and glycosaminoglycans in cancer development and progression[J]. Int J Mol Sci,2020, 21(17):5983.
|
[33] |
Belli C, Trapani D, Viale G, et al. Targeting the microenvironment in solid tumors[J]. Cancer Treat Rev,2018,65:22-32.
|
[34] |
Roma-Rodrigues C, Mendes R, Baptista PV, et al. Targeting tumor microenvironment for cancer therapy[J]. Int J Mol Sci,2019, 20(4):840.
|
[35] |
Yamauchi M, Shiiba M. Lysine hydroxylation and cross-linking of collagen [J]. Methods Mol Biol, 2008, 446: 95-108.
|
[36] |
Nedeljkovic′ M, Damjanovic′ A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge[J]. Cells,2019,8(9):957.
|
[37] |
Saatci O, Kaymak A, Raza U, et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer[J]. Nat Commun,2020,11(1):2416.
|
[38] |
Vallet SD, Ricard-Blum S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links[J]. Essays Biochem,2019,63(3):349-364.
|
[39] |
Chitty JL, Setargew YFI, Cox TR. Targeting the lysyl oxidases in tumour desmoplasia[J]. Biochem Soc Trans,2019,47(6):1661-1678.
|
[40] |
Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment[J]. Nat Med,2010,16(9):1009-1017.
|
[41] |
Chan N, Willis A, Kornhauser N, et al. Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases[J]. Clin Cancer Res,2017,23(3):666-676.
|
[42] |
Liu J, Liao S, Diopfrimpong B, et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma [J]. Proc Natl Acad Sci U S A, 2012, 109(41): 16 618-16 623.
|
[43] |
Yao H, Veine DM, Livant DL. Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin [J]. Breast Cancer Res Treat, 2016, 157(3): 489-501.
|
[44] |
Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization [J]. Nature,2011,481(7379):85-89.
|