切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 47 -50. doi: 10.3877/cma.j.issn.1674-0807.2022.01.009

综述

循环肿瘤DNA检测在乳腺癌中的临床应用
周璐1,(), 徐静1, 徐琰1   
  1. 1. 400042 重庆,陆军军医大学附属陆军特色医学中心乳腺甲状腺外科
  • 收稿日期:2021-03-20 出版日期:2022-02-01
  • 通信作者: 周璐

Clinical application of circulating tumor DNA detection in breast cancer

Lu Zhou1(), Jing Xu1, Yan Xu1   

  • Received:2021-03-20 Published:2022-02-01
  • Corresponding author: Lu Zhou
引用本文:

周璐, 徐静, 徐琰. 循环肿瘤DNA检测在乳腺癌中的临床应用[J]. 中华乳腺病杂志(电子版), 2022, 16(01): 47-50.

Lu Zhou, Jing Xu, Yan Xu. Clinical application of circulating tumor DNA detection in breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2022, 16(01): 47-50.

乳腺癌已成为全球最常见的癌症,发病率、病死率呈逐年上升趋势。随着二代测序技术的发展,血浆循环肿瘤DNA(ctDNA)检测在乳腺癌的研究中极有应用前景,它是一种可实时动态监测、可重复的微创检测手段,可从分子水平揭示肿瘤的遗传学特征,克服传统检查的诸多不足。ctDNA检测可在乳腺癌的早期诊断、疗效评估、耐药识别和预后判断等多个方面为乳腺癌患者提供精准诊疗指导。

[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2]
Wang L. Early diagnosis of breast cancer[J]. Sensors (Basel), 2017, 17(7):1572.
[3]
Esposito A, Criscitiello C, Locatelli M, et al. Liquid biopsies for solid tumors: understanding tumor heterogeneity and real time monitoring of early resistance to targeted therapies[J]. Pharmacol Ther, 2016, 157: 120-124.
[4]
Duffy MJ, Evoy D, Mcdermott EW. CA 15-3: uses and limitation as a biomarker for breast cancer[J]. Clin Chim Acta, 2010, 411(23/24): 1869-1874.
[5]
Gorgannezhad L, Umer M, Islam MN, et al. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies[J]. Lab Chip, 2018, 18(8): 1174-1196.
[6]
De Mattos-Arruda L, Caldas C. Cell-free circulating tumour DNA as a liquid biopsy in breast cancer[J]. Mol Oncol, 2016, 10(3): 464-474.
[7]
Saliou A, Bidard FC, Lantz O, et al. Circulating tumor DNA for triple-negative breast cancer diagnosis and treatment decisions[J]. Expert Rev Mol Diagn, 2016, 16(1): 39-50.
[8]
De Mattos-Arruda L, Cortes J, Santarpia L, et al. Circulating tumour cells and cell-free DNA as tools for managing breast cancer[J]. Nat Rev Clin Oncol, 2013, 10(7): 377-389.
[9]
Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer[J]. N Engl J Med, 2013, 368(13): 1199-1209.
[10]
Jen J, Wu L, Sidransky D. An overview on the isolation and analysis of circulating tumor DNA in plasma and serum[J]. Ann N Y Acad Sci, 2000, 906: 8-12.
[11]
Batth IS, Mitra A, Manier S, et al. Circulating tumor markers: harmonizing the yin and yang of CTCs and ctDNA for precision medicine[J]. Ann Oncol, 2017, 28(3): 468-477.
[12]
Schwarzenbach H, Pantel K. Circulating DNA as biomarker in breast cancer[J]. Breast Cancer Res, 2015, 17(1): 136.
[13]
García-Foncillas J, Alba E, Aranda E, et al. Incorporating BEAMing technology as a liquid biopsy into clinical practice for the management of colorectal cancer patients: an expert taskforce review[J]. Ann Oncol, 2017, 28(12): 2943-2949.
[14]
Zhang YC, Zhou Q, Wu YL. The emerging roles of NGS-based liquid biopsy in non-small cell lung cancer[J]. J Hematol Oncol, 2017, 10(1): 167.
[15]
Cresswell GD, Nichol D, Spiteri I, et al. Mapping the breast cancer metastatic cascade onto ctDNA using genetic and epigenetic clonal tracking[J]. Nat Commun, 2020, 11(1): 1446.
[16]
Zhou Y, Xu Y, Gong Y, et al. Clinical factors associated with circulating tumor DNA (ctDNA) in primary breast cancer[J]. Mol Oncol, 2019, 13(5): 1033-1046.
[17]
U.S. Food and Drug Administration. FDA approves first liquid biopsy next-generation sequencing companion diagnostic test[EB/OL]. [2020-08-07].

URL    
[18]
Khodari W, Sedrati A, Naisse I, et al. Impact of loco-regional treatment on metastatic breast cancer outcome: a review[J]. Crit Rev Oncol Hematol, 2013, 87(1): 69-79.
[19]
Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA[J]. Cancer Discov, 2014, 4(6): 650-661.
[20]
Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing[J]. Sci Transl Med, 2012, 4(162): 162ra154.
[21]
Beaver JA, Jelovac D, Balukrishna S, et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer[J]. Clin Cancer Res, 2014, 20(10): 2643-2650.
[22]
Zhang X, Zhao W, Wei W, et al. Parallel analyses of somatic mutations in plasma circulating tumor DNA (ctDNA) and matched tumor tissues in early-stage breast cancer[J]. Clin Cancer Res, 2019, 25(21): 6546-6553.
[23]
Yoshinami T, Kagara N, Motooka D, et al. Detection of ctDNA with personalized molecular barcode NGS and its clinical significance in patients with early breast cancer[J]. Transl Oncol, 2020, 13(8): 100 787.
[24]
Olsson E, Winter C, George A, et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease[J]. EMBO Mol Med, 2015, 7(8): 1034-1047.
[25]
Cavallone L, Aguilar-Mahecha A, Lafleur J, et al. Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer[J]. Sci Rep, 2020, 10(1): 14704.
[26]
Rothé F, Silva MJ, Venet D, et al. Circulating tumor DNA in HER2-amplified breast cancer: a translational research substudy of the NeoALTTO phase Ⅲ trial[J]. Clin Cancer Res, 2019, 25(12): 3581-3588.
[27]
Killock D. Personalized MRD assays and therapy?[J]. Nat Rev Clin Oncol, 2019, 16(10): 593.
[28]
Coakley M, Garcia-Murillas I, Turner NC. Molecular residual disease and adjuvant trial design in solid tumors[J]. Clin Cancer Res, 2019, 25(20): 6026-6034.
[29]
Garcia-Murillas I, Schiavon G, Weigelt B, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer[J]. Sci Transl Med, 2015, 7(302): 302ra133.
[30]
Chae YK, Davis AA, Carneiro BA, et al. Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA[J]. Oncotarget, 2016, 7(40): 65 364-65 373.
[31]
Bosch A, Li Z, Bergamaschi A, et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer[J]. Sci Transl Med, 2015, 7(283): 283ra251.
[32]
Davis AA, Jacob S, Gerratana L, et al. Landscape of circulating tumour DNA in metastatic breast cancer[J]. EBioMedicine, 2020, 58: 102 914.
[33]
Murtaza M, Dawson SJ, Tsui DW, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA[J]. Nature, 2013, 497(7447): 108-112.
[34]
Pascual J, Lim JSJ, Macpherson IR, et al. Triplet therapy with palbociclib, taselisib, and fulvestrant in PIK3CA-mutant breast cancer and doublet palbociclib and taselisib in pathway-mutant solid cancers[J]. Cancer Discov, 2021, 11(1): 92-107.
[35]
Yi Z, Ma F, Rong G, et al. Clinical spectrum and prognostic value of TP53 mutations in circulating tumor DNA from breast cancer patients in China[J]. Cancer Commun (Lond), 2020, 40(6): 260-269.
[36]
Ma F, Zhu W, Guan Y, et al. ctDNA dynamics: a novel indicator to track resistance in metastatic breast cancer treated with anti-HER2 therapy[J]. Oncotarget, 2016, 7(40): 66 020-66 031.
[37]
Chu D, Paoletti C, Gersch C, et al. ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients[J]. Clin Cancer Res, 2016, 22(4): 993-999.
[38]
Turner NC, Swift C, Kilburn L, et al. ESR1 mutations and overall survival on fulvestrant versus exemestane in advanced hormone receptor-positive breast cancer: a combined analysis of the phase Ⅲ SoFEA and EFECT trials[J]. Clin Cancer Res, 2020, 26(19): 5172-5177.
[39]
Hartmaier RJ, Trabucco SE, Priedigkeit N, et al. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer[J]. Ann Oncol, 2018, 29(4): 872-880.
[40]
Schiavon G, Hrebien S, Garcia-Murillas I, et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer[J]. Sci Transl Med, 2015, 7(313): 313ra182.
[41]
Page K, Guttery DS, Fernandez-Garcia D, et al. Next generation sequencing of circulating cell-free DNA for evaluating mutations and gene amplification in metastatic breast cancer[J]. Clin Chem, 2017, 63(2): 532-541.
[42]
Hanker AB, Brewer MR, Sheehan JH, et al. Correction: an acquired HER2 (T798I) gatekeeper mutation induces resistance to neratinib in a patient with HER2 mutant-driven breast cancer[J]. Cancer Discov, 2019, 9(2): 303.
[43]
Ma CX, Bose R, Gao F, et al. Neratinib efficacy and circulating tumor DNA detection of HER2 mutations in HER2 nonamplified metastatic breast cancer[J]. Clin Cancer Res, 2017, 23(19): 5687-5695.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[13] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[14] 屈洪波, 朱芳, 徐喆, 武楠, 何建怀, 王先明. 经肌间入路行锁骨下淋巴结清扫在局部晚期乳腺癌中的应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 510-513.
[15] 陈珊, 胡智强, 张月明, 唐定, 黎蒙, 赵帅. Orai1、Orai3在乳腺癌组织中的表达及与病理学指标的相关性分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 514-517.
阅读次数
全文


摘要