切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 112 -116. doi: 10.3877/cma.j.issn.1674-0807.2021.02.009

所属专题: 文献

综述

基因多态性对芳香化酶抑制剂疗效的影响
陈莉1, 陈雪松1,()   
  1. 1. 150081 哈尔滨医科大学附属肿瘤医院乳腺内四科
  • 收稿日期:2018-12-06 出版日期:2021-04-01
  • 通信作者: 陈雪松

Influence of gene polymorphism on efficacy of aromatase inhibitors

Li Chen1, Xuesong Chen1()   

  • Received:2018-12-06 Published:2021-04-01
  • Corresponding author: Xuesong Chen
引用本文:

陈莉, 陈雪松. 基因多态性对芳香化酶抑制剂疗效的影响[J/OL]. 中华乳腺病杂志(电子版), 2021, 15(02): 112-116.

Li Chen, Xuesong Chen. Influence of gene polymorphism on efficacy of aromatase inhibitors[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(02): 112-116.

芳香化酶抑制剂(AIs)是绝经后激素受体阳性乳腺癌患者的首选内分泌药物。AIs相关基因的单核苷酸多态性(SNP)可能引起个体酶特异性催化活性的改变,从而导致个体间存在差异。相关研究提示,药物代谢酶及其相关基因的SNP是预测乳腺癌患者AIs疗效和不良反应的生物标志物,可指导乳腺癌患者接受更加个体化的内分泌治疗方案。笔者就AIs相关代谢酶、相关转运蛋白及其他相关基因的SNP对药物疗效和不良反应的影响作一介绍。

表1 AIs相关基因的SNP对其的影响
[1]
Fernández MF, Reina-Pérez I, Astorga JM,et al. Breast cancer and its relationship with the microbiota[J]. Int J Environ Res Public Health,2018,15(8):1747.
[2]
Peddi PF. Hormone receptor positive breast cancer:state of the art[J]. Curr Opin Obstet Gynecol,2018,30 (1): 51-54.
[3]
Condorelli R, Vaz-Luis I. Managing side effects in adjuvant endocrine therapy for breast cancer[J]. Expert Rev Anticancer Ther,2018,18(11): 1101-1112.
[4]
李焱,鲁海玲,霍明鸣,等. 芳香化酶抑制剂耐药机制研究进展[J/CD]. 中华乳腺病杂志(电子版),2017,11(3):171-174.
[5]
Borrie AE, Rose RV, Choi YH, et al.Letrozole concentration is associated with CYP2A6 variation but not with arthralgia in patients with breast cancer[J]. Breast Cancer Res Treat,2018,172(2): 371-379.
[6]
Luo S, Chen G, Truica C,et al. Role of the UGT2B17 deletion in exemestane pharmacogenetics [J]. Pharmacogenomics J,2018,18(2):295-300.
[7]
Early Breast Cancer Trialists’Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer:patient-level meta-analysis of the randomised trials[J]. Lancet,2015,386(10 001):1341-1352.
[8]
霍明鸣,庞慧,李焱,等. 激素受体阳性晚期乳腺癌内分泌治疗的优化选择[J/CD]. 中华乳腺病杂志(电子版) ,2017,11(1): 43-46.
[9]
Shoombuatong W, Schaduangrat N, Nantasenamat C. Towards understanding aromatase inhibitory activity via QSAR modeling[J]. EXCLI J,2018,17:688-708.
[10]
Kang H, Xiao X, Huang C, et al. Potent aromatase inhibitors and molecular mechanism of inhibitory action[J]. Eur J Med Chem,2018,143:426-437.
[11]
Augusto TV, Correia-da-Silva G, Rodrigues CMP, et al. Acquired resistance to aromatase inhibitors: where we stand! [J]. Endocr Relat Cancer,2018,25 (5): R283-R301.
[12]
Hamadeh IS, Patel JN, Rusin S,et al. Personalizing aromatase inhibitor therapy in patients with breast cancer[J]. Cancer Treat Rev,2018,70:47-55.
[13]
Elfaki I, Mir R, Almutairi FM, et al. Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis[J]. Asian Pac J Cancer Prev,2018,19 (8): 2057-2070.
[14]
Liu X, Low SK and Boddy AV.The implications of genetic variation for the pharmacokinetics and pharmacodynamics of aromatase inhibitors[J]. Expert Opin Drug Metab Toxicol,2016,12(8): 851-863.
[15]
Kaewlert W, Sakonsinsiri C, Namwat N,et al. The importance of CYP19A1 in estrogen receptor-positive cholangiocarcinoma[J]. Horm Cancer,2018,9(6): 408-419.
[16]
Artigalas O, Vanni T, Hutz MH, et al. Influence of CYP19A1 polymorphisms on the treatment of breast cancer with aromatase inhibitors: a systematic review and meta-analysis[J]. BMC Med,2015,13:139
[17]
Shao X, Cai J, Zheng Y,et al. S4646 polymorphism in CYP19A1 gene is associated with the effcacy of hormone therapy in early breast cancer[J]. Int J Clin Exp Pathol 2015,8(5):5309-5317.
[18]
刘磊,孔凡巍,李庆华,等. CYP19A1基因多态性与晚期乳腺癌阿那曲唑治疗疗效相关性研究[J]. 中国肿瘤,2017,26(9):740-744.
[19]
Glubb DM, O’Mara TA, Shamsani J, et al. The association of CYP19A1 variation with circulating estradiol and aromatase inhibitor outcome: can CYP19A1 variants be used to predict treatment efficacy? [J]. Front Pharmacol,2017,8:218.
[20]
Gervasini G, Jara C, Olier C, et al.Polymorphisms in ABCB1 and CYP19A1 genes affect anastrozole plasma concentrations and clinical outcomes in postmenopausal breast cancer patients [J]. Br J Clin Pharmacol,2017,83(3): 562-571.
[21]
Ferraldeschi R, Arnedos M, Hadfield KD,et al. Polymorphisms of CYP19A1 and response to aromatase inhibitors in metastatic breast cancer patients [J]. Breast Cancer Res Treat,2012,133:1191-1198.
[22]
Johansson H, Gray KP, Pagani O, et al.Impact of CYP19A1 and ESR1 variants on early-onset side effects during combined endocrine therapy in the TEXT trial [J]. Breast Cancer Res,2016,18 (1): 110.
[23]
Napoli N, Rastelli A, Ma C, et al. Genetic polymorphism at Val80 (rs700518) of the CYP19A1 gene is associated with body composition changes in women on aromatase inhibitors for ER (+) breast cancer [J]. Pharmacogenet Genomics,2015,25(8): 377-381.
[24]
Mazzuca F, Botticelli A, Mazzotti E, et al. CYP19A1 genetic polymorphisms rs4646 and osteoporosis in patients treated with aromatase inhibitor-based adjuvant therapy[J]. Eurasian J Med,2016, 48(1): 10-14.
[25]
Santa-Maria CA, Blackford A, Nguyen AT,et al. Association of variants in candidate genes with lipid profiles in women with early breast cancer on adjuvant aromatase inhibitor therapy[J]. Clin Cancer Res,2015,22(6):1395-1402.
[26]
Zheng Y, Xu Y, Zhou BY,et al. CYP3A4*1B polymorphism and cancer risk: a meta-analysis based on 55 case-control studies [J]. Ann Clin Lab Sci,2018,48(4):538-545.
[27]
Zhang Y, Wu J, Zhou Y,et al. Effects of psoralen on the pharmacokinetics of anastrozole in rats[J]. Pharm Biol,2018,56 (1): 433-439.
[28]
Hertz DL, Kidwell KM, Seewald NJ,et al. Polymorphisms in drug-metabolizing enzymes and steady-state exemestane concentration in postmenopausal patients with breast cancer[J]. Pharmacogenomics J,2017,17(6): 521-527.
[29]
Hertz DL, Henry NL, Rae JM. Germline genetic predictors of aromatase inhibitor concentrations, estrogen suppression and drug effcacy and toxicity in breast cancer patients [J]. Pharmacogenomics,2017,18(5):481-499.
[30]
Tanner JA and Tyndale RF.Variation in CYP2A6 activity and personalized medicine [J]. J Pers Med,2017,7(4):18.
[31]
Wassenaar CA, Zhou Q, Tyndale RF. CYP2A6 genotyping methods and strategies using real-time and end point PCR platforms [J]. Pharmacogenomics,2016,17(2):147-162.
[32]
Yang N, Sun R, Liao X, et al.UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine [J]. Pharmacol Res,2017,121:169-183.
[33]
Abubakar MB, Wei K, Gan SH. The influence of genetic polymorphisms on the efficacy and side effects of anastrozole in postmenopausal breast cancer patients [J]. Pharmacogenet Genomics,2014,24 (12): 575-581.
[34]
Edavana VK, Dhakal IB, Williams S,et al. Potential role of UGT1A4 promoter SNPs in anastrozole pharmacogenomics [J]. Drug Metab Dispos,2013,41(4):870-877.
[35]
Gregory BJ, Chen SM, Murphy MA,et al. Impact of the OATP1B1 c.521T>C single nucleotide polymorphism on the pharmacokinetics of exemestane in healthy post-menopausal female volunteers [J]. J Clin Pharm Ther,2017,42 (5): 547-553.
[36]
Rizner TL, Penning TM. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism [J]. Steroids,2014, 79: 49-63.
[37]
Platt A, Xia Z, Liu Y,et al. Impact of nonsynonymous single nucleotide polymorphisms on in-vitro metabolism of exemestane by hepatic cytosolic reductases[J]. Pharmacogenet Genomics,2016,26(8): 370-380.
[38]
Sjostedt N, Holvikari K, Tammela P,et al. Inhibition of breast cancer resistance protein and multidrug resistance associated protein 2 by natural compounds and their derivatives[J]. Mol Pharm,2017,14(1): 135-146.
[39]
Edavana VK, Penney RB, Yao-Borengasser A,et al. Effect of MRP2 and MRP3 polymorphisms on anastrozole glucuronidation and MRP2 and MRP3 gene expression in normal liver samples[J]. Int J Cancer Res Mol Mech,2015,1(3):10.16966/2381-3318.112.
[40]
Hertz DL, Barlow WE, Kidwell KM ,et al. Fulvestrant decreases anastrozole drug concentrations when taken concurrently by patients with metastatic breast cancer treated on swog study s0226[J]. Br J Clin Pharmacol,2016, 81(6):1134-1141.
[41]
Zhang B, Lauschke VM. Genetic variability and population diversity of the human SLCO (OATP) transporter family [J]. Pharmacol Res,2019,139:550-559.
[42]
Mosly D, Turnbull A, Sims A,et al. Predictive markers of endocrine response in breast cancer [J]. World J Exp Med,2018,8(1): 1-7.
[43]
Reinert T, Goncalves R, Bines J. Implications of ESR1 mutations in hormone receptor-positive breast cancer [J]. Curr Treat Options Oncol,2018,19 (5): 24.
[44]
Angus L, Beije N, Jager A,et al. ESR1 mutations: Moving towards guiding treatment decision-making in metastatic breast cancer patients [J]. Cancer Treat Rev,2017,52:33-40.
[45]
Ho MF, Ingle JN, Bongartz T,et al. TCL1A single-nucleotide polymorphisms and estrogen-mediated toll-like receptor-MYD88-dependent nuclear factor-κB activation: single-nucleotide polymorphism- and selective estrogen receptor modulator-dependent modification of inflammation and immune response [J]. Mol Pharmacol,2017,92(2): 175-184.
[46]
Ho MF, Lummertz da Rocha E, Zhang C,et al. TCL1A, a novel transcription factor and a coregulator of nuclear factor κB p65: Single nucleotide polymorphism and estrogen dependence [J]. J Pharmacol Exp Ther,2018,365(3): 700-710.
[47]
Ho MF, Bongartz T, Liu M,et al. Estrogen, SNP-dependent chemokine expression and selective estrogen receptor modulator regulation[J]. Mol Endocrinol,2016,30(3):382-398.
[48]
St Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification [J]. Trends Genet,2015,31(5): 239-251.
[49]
Ingle JN, Xie F, Ellis MJ,et al. Genetic polymorphisms in the long noncoding RNA MIR2052HG offer a pharmacogenomic basis for the response of breast cancer patients to aromatase inhibitor therapy [J]. Cancer Res,2016,76(23):7012-7023.
[50]
Fu X, He Y, Wang X,et al. MicroRNA-16 promotes ovarian granulosa cell proliferation and suppresses apoptosis through targeting PDCD4 in polycystic ovarian syndrome [J]. Cell Physiol Biochem,2018,48(2): 670-682.
[51]
Chen Z, Yuan YC, Wang Y,et al. Down-regulation of programmed cell death 4 (PDCD4) is associated with aromatase inhibitor resistance and a poor prognosis in estrogen receptor-positive breast cancer [J]. Breast Cancer Res Treat,2015,152(1): 29-39.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[3] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[4] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[5] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[6] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[7] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[8] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[9] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[10] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[11] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[12] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[13] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[14] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[15] 丁富贵, 吴泽涛, 董卫国. 家族性腺瘤性息肉病临床特征及生物信息学分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 512-518.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?