切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 30 -38. doi: 10.3877/cma.j.issn.1674-0807.2021.01.006

所属专题: 文献

论著

阿托伐他汀增加乳腺癌细胞对多柔比星敏感性的研究
杨璐1, 杨继鑫1, 李南林1,()   
  1. 1. 710032 西安,空军军医大学附属西京医院甲乳血管外科
  • 收稿日期:2020-06-24 出版日期:2021-02-01
  • 通信作者: 李南林

Statins increase sensitivity of breast cancer cells to doxorubicin

Lu Yang1, Jixin Yang1, Nanlin Li1,()   

  1. 1. Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
  • Received:2020-06-24 Published:2021-02-01
  • Corresponding author: Nanlin Li
引用本文:

杨璐, 杨继鑫, 李南林. 阿托伐他汀增加乳腺癌细胞对多柔比星敏感性的研究[J]. 中华乳腺病杂志(电子版), 2021, 15(01): 30-38.

Lu Yang, Jixin Yang, Nanlin Li. Statins increase sensitivity of breast cancer cells to doxorubicin[J]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(01): 30-38.

目的

探讨他汀类药物增加乳腺癌细胞对多柔比星敏感性的机制。

方法

(1)用不同浓度的多柔比星(0、0.01、0.02、0.04、0.08、0.16、0.32、0.64、1.28 μg/ml)与0、2 μmol/L的阿托伐他汀联合处理MDA-MB-231细胞,通过细胞计数检测试剂盒(CCK-8)检测450 nm波长下的吸光度值,从而计算细胞活力。(2)分别用0.3 μg/ml多柔比星、2 μmol/L阿托伐他汀单药及两药联合处理MDA-MB-231细胞,并以未经任何药物处理的细胞作为对照组,通过Hoechst染色检测MDA-MB-231细胞凋亡情况,通过细胞划痕实验、Transwell实验检测细胞迁移及侵袭能力,通过Western blot检测MDA-MB-231细胞中caspase 3、caspase 9、3-羟基-3-甲基戊二酰辅酶A还原酶(HMGCR)、甾醇调节元件结合蛋白转录因子2(SREBP2)及低密度脂蛋白受体(LDLR)的表达。细胞活力比较采用析因分析,未凋亡细胞数、划痕面积百分比、穿膜细胞数及不同蛋白表达等指标的多组比较采用单因素方差分析,两两比较采用LSD法。

结果

(1)与多柔比星单药相比,阿托伐他汀与多柔比星联合应用可以显著抑制MDA-MB-231细胞活力(F=243.043, P<0.001);不同浓度多柔比星组细胞活力比较,差异有统计学意义( F=1 803.617, P<0.001);两个因素存在交互作用(F=21.030, P<0.001)。(2)各组的未凋亡细胞数比较,差异具有统计学意义(对照组:94.00±4.24:阿托伐他汀组:57.00±1.41,多柔比星组:34.50±2.12,阿托伐他汀+多柔比星组:19.00±2.83,F=261.021,P<0.001),两两比较结果显示,组间差异均有统计学意义(P均<0.050)。各组间的划痕面积百分比比较,差异具有统计学意义[对照组:(28.94±3.59)%,阿托伐他汀组:(31.00±2.99)%,多柔比星组:(40.16±2.38)%,阿托伐他汀+多柔比星组:(60.86±3.60)%,F=42.080,P<0.050]。与对照组、阿托伐他汀组及多柔比星组相比,阿托伐他汀+多柔比星组划痕面积均增加(P均<0.050)。各组穿膜细胞数比较,差异具有统计学意义(对照组:101.20±14.55,阿托伐他汀组:75.80±7.33,多柔比星组:32.40±4.78,阿托伐他汀+多柔比星组:8.80±2.50,F=118.031,P<0.001),两两比较结果显示差异均具有统计学意义(P均<0.050)。各组MDA-MB-231细胞中凋亡相关蛋白caspase 3、caspase 9的表达比较,差异均有统计学意义(F=128.854、247.530,P均<0.001)。与多柔比星组相比,阿托伐他汀+多柔比星组caspase 3、caspase 9蛋白的表达显著增加(P均<0.050)。4组MDA-MB-231细胞中HMGCR、SREBP2、LDLR蛋白的表达量比较,差异均具有统计学意义(F=183.193、227.470、586.087,P均<0.001)。两两比较结果显示,与对照组比较,阿托伐他汀+多柔比星组中HMGCR表达明显升高,SREBP2、LDLR表达明显降低(P均<0.050);与对照组相比,多柔比星组HMGCR的表达无明显改变(P>0.050),SREBP2、LDLR的表达明显降低(P均<0.050),阿托伐他汀组HMGCR表达高于对照组(P<0.050);与多柔比星组相比,阿托伐他汀+多柔比星组HMGCR表达增加(P<0.050),SREBP2的表达降低(P<0.050), LDLR的表达无明显变化(P>0.050)。

结论

阿托伐他汀通过抑制HMGCR表达,减少细胞内胆固醇的合成,使细胞更依赖于外源性胆固醇的摄取;多柔比星通过抑制LDLR表达减少外源性胆固醇的摄取;因此,当两药联用后由于细胞内胆固醇合成减少,使细胞更依赖于外源性胆固醇的摄取,对多柔比星更加敏感。

Objective

To explore the mechanism of statins increasing the sensitivity of breast cancer cells to doxorubicin.

Methods

(1)Doxorubicin at gradient concentrations (0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28 μg/ml) and atorvastatin (0, 2 μmol/L) were used to treat MDA-MB- 231 cells, respectively. The optical density at 450 nm wavelength was detected by the cell counting detection kit (CCK-8) to calculate the cell viability. (2) MDA-MB-231 cells were treated with 0.3 μg/ml doxorubicin, 2 μmol/L atorvastatin and the combination of both and the cells without any drug treatment served as control. The apoptosis of MDA-MB-231 cells was detected after Hoechst staining. The cell migration and invasion abilities were measured by cell scratch test and Transwell test. The expression of caspase 3, caspase 9, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), sterol regulatory element binding protein transcription factor 2 (SREBP2) and low-density lipoprotein receptor (LDLR) in MDA-MB-231 cells were determined by Western blot. The cell viability was compared using factor analysis. The number of survival cells, percentage of scratch area and number of cells penetrating membranes and expression of different proteins were compared among multiple groups using one-way analysis of variance and the LSD method was used for pairwise comparison.

Results

(1) Compared with cells treated by doxorubicin alone, the combination of atorvastatin and doxorubicin significantly inhibited the viability of MDA-MB-231 cells (F=243.043, P<0.001); the viability of cells treated by different concentrations of doxorubicin presented a significant difference (F=1 803.617, P<0.001); there was an interaction between the two factors (F=21.030, P<0.001). (2) The number of survival cells presented a significant difference among four groups (control group: 94.00±4.24: atorvastatin group: 57.00±1.41, doxorubicin group: 34.50±2.12, atorvastatin+ doxorubicin group: 19.00±2.83, F=261.021, P<0.001). Pairwise comparison showed that the difference between groups was statistically significant (all P<0.050). The percentage of scratch area presented a significant difference among four groups [control group: (28.94±3.59)%, atorvastatin group: (31.00±2.99)%, doxorubicin group: (40.16±2.38)%, atorvastatin+ doxorubicin group: (60.86±3.60)%, F=42.080, P<0.050]. The scratch area of atorvastatin+ doxorubicin group was significantly increased compared with control group, atorvastatin group and doxorubicin group (all P<0.050). The number of cells penetrating membranes presented a significant difference among four groups (control group: 101.20±14.55, atorvastatin group: 75.80±7.33, doxorubicin group: 32.40±4.78, atorvastatin + doxorubicin group: 8.80±2.50, F=118.031, P<0.001). Pairwise comparison showed that the difference between groups was statistically significant (all P<0.050). After treatment with different drugs, the expressions of caspase 3 and caspase 9 (apoptosis-related proteins) in MDA-MB-231 cells presented a significant difference among four groups (F=128.854, 247.530, both P<0.001). Compared with doxorubicin group, the expression of caspase 3 and caspase 9 in atorvastatin+ doxorubicin group was significantly increased (both P<0.050). The expression of HMGCR, SREBP2 and LDLR in MDA-MB-231 cells presented a significant difference among four groups (F=183.193, 227.470, 586.087, all P<0.001). Pairwise comparison showed that compared with control group, HMGCR expression in atorvastatin+ doxorubicin group was significantly increased (P<0.050), while the expression of SREBP2 and LDLR was significantly decreased (both P<0.050); there was no significant difference in HMGCR expression between control group and doxorubicin group(P>0.050), while the expression of SREBP2 and LDLR in doxorubicin group was significantly lower than that in control group(both P<0.050); HMGCR expression in atorvastatin group was significantly higher than that in control group(P<0.050); compared with doxorubicin group, atorvastatin+ doxorubicin group presented significantly higher expression of HMGCR and lower expression of SREBP2 (both P<0.050), while LDLR expression presented no significant difference (P>0.050).

Conclusions

Atorvastatin reduces the synthesis of intracellular cholesterol by inhibiting HMGCR expression, making MDA-MB-231 cells more dependent on the uptake of exogenous cholesterol; doxorubicin reduces the uptake of exogenous cholesterol by inhibiting LDLR expression. If two drugs are used in combination, MDA-MB-231 cells are more dependent on the uptake of exogenous cholesterol due to reduced synthesis intracellular cholesterol, so they are more sensitive to doxorubicin.

表1 不同浓度多柔比星联合阿托伐他汀处理后的MDA-MB-231细胞活力比较(%)
图1 不同药物处理后MDA-MB-231乳腺癌细胞凋亡情况(Hoechst ×20) a~d图分别所示对照组、阿托伐他汀组、多柔比星组及阿托伐他汀+多柔比星组细胞凋亡情况
图2 光镜下观察不同药物处理后MDA-MB-231乳腺癌细胞形态的变化(×10) a~d图分别所示对照组、阿托伐他汀组、多柔比星组及阿托伐他汀+多柔比星组细胞形态变化
图3 Western blot检测不同药物处理后MDA-MB-231乳腺癌细胞中caspase 3、caspase 9的表达
表2 不同药物处理后MDA-MB-231乳腺癌细胞中caspase 3、caspase 9蛋白的表达
图4 不同药物处理后MDA-MB-231乳腺癌细胞划痕实验结果(×20) a~d图分别所示对照组、阿托伐他汀组、多柔比星组及阿托伐他汀+多柔比星组细胞划痕实验结果
图5 不同药物处理后MDA-MB-231乳腺癌细胞Transwell实验结果(结晶紫 ×20) a~d图分别所示对照组、阿托伐他汀组、多柔比星组及阿托伐他汀+多柔比星组细胞Transwell实验结果
图6 不同药物处理后MDA-MB-231乳腺癌细胞中胆固醇代谢相关蛋白表达
表3 不同药物处理后MDA-MB-231乳腺癌细胞中HMGCR、SREBP2、LDLR蛋白的表达
[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34.
[2]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[3]
钱波. 我国乳腺癌筛查及药物预防的现状及进展[J]. 中国妇幼保健,2019, 34(23): 5558-5561.
[4]
Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC [J]. Cancers (Basel), 2020, 12(4):916.
[5]
孙晓萌,高社干. 三阴性乳腺癌的临床治疗现状及新进展[J]. 实用癌症杂志,2020, 35(6): 1037-1039.
[6]
O’reilly EA, Gubbins L, Sharma S, et al. The fate of chemoresistance in triple negative breast cancer (TNBC)[J]. BBA Clin, 2015, 3: 257-275.
[7]
Ikonen E. Cellular cholesterol trafficking and compartmentalization[J]. Nat Rev Mol Cell Biol, 2008, 9(2): 125-138.
[8]
Wang Y, Rogers PM, Su C, et al. Regulation of cholesterologenesis by the oxysterol receptor, LXRalpha[J]. J Biol Chem, 2008, 283(39): 26 332-26 339.
[9]
Kolanjiappan K, Ramachandran CR, Manoharan S. Biochemical changes in tumor tissues of oral cancer patients[J]. Clin Biochem, 2003, 36(1): 61-65.
[10]
He M, Zhang W, Dong Y, et al. Pro-inflammation NF-κB signaling triggers a positive feedback via enhancing cholesterol accumulation in liver cancer cells[J]. J Exp Clin Cancer Res, 2017, 36(1): 15.
[11]
Kim J, Thompson B, Han S, et al. Uptake of HDL-cholesterol contributes to lipid accumulation in clear cell renal cell carcinoma[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(12): 158 525.
[12]
Munir MT, Ponce C, Powell CA, et al. The contribution of cholesterol and epigenetic changes to the pathophysiology of breast cancer[J]. J Steroid Biochem Mol Biol, 2018, 183: 1-9.
[13]
Holstein SA, Hohl RJ. Synergistic interaction of lovastatin and paclitaxel in human cancer cells[J]. Mol Cancer Ther, 2001, 1(2): 141-149.
[14]
Ahn KS, Sethi G, Aggarwal BB. Reversal of chemoresistance and enhancement of apoptosis by statins through down-regulation of the NF-kappaB pathway[J]. Biochem Pharmacol, 2008, 75(4): 907-913.
[15]
Chen X, Liu Y, Wu J, et al. Mechanistic study of inhibitory effects of atorvastatin and docetaxel in combination on prostate cancer[J]. Cancer Genomics Proteomics, 2016, 13(2): 151-160.
[16]
Werner M, Sacher J, Hohenegger M. Mutual amplification of apoptosis by statin-induced mitochondrial stress and doxorubicin toxicity in human rhabdomyosarcoma cells[J]. Br J Pharmacol, 2004, 143(6): 715-724.
[17]
International Agency for Research on Cancer. Latest global cancer data: cancer burden rises to 19.3 million new casesand 10.0 million cancer deaths in 2020[EB/OL]. [2020-12-15].

URL    
[18]
Kobayashi Y, Kashima H, Rahmanto YS, et al. Drug repositioning of mevalonate pathway inhibitors as antitumor agents for ovarian cancer[J]. Oncotarget, 2017, 8(42): 72147-72156.
[19]
王玲,周巧直,王晓燕. 阿托伐他汀调控MMP-9、Cleaved Caspase-3、Bcl-2和Bax蛋白表达对胃癌细胞增殖、周期和凋亡的影响[J]. 胃肠病学和肝病学杂志,2018, 27(11): 1206-1210.
[20]
Langballe R, Cronin-fenton D, Dehlendorff C, et al. Statin use and risk of contralateral breast cancer: a nationwide cohort study[J]. Br J Cancer, 2018, 119(10): 1297-1305.
[21]
Borgquist S, Broberg P, Tojjar J, et al. Statin use and breast cancer survival - a Swedish nationwide study[J]. BMC Cancer, 2019, 19(1): 54.
[22]
Beckwitt CH, Brufsky A, Oltvai ZN, et al. Statin drugs to reduce breast cancer recurrence and mortality[J]. Breast Cancer Res, 2018, 20(1): 144.
[23]
Wang T, Seah S, Loh X, et al. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway[J]. Oncotarget, 2016, 7(3): 2532-2544.
[24]
Feldt M, Bjarnadottir O, Kimbung S, et al. Statin-induced anti-proliferative effects via cyclin D1 and p27 in a window-of-opportunity breast cancer trial[J]. J Transl Med, 2015, 13: 133.
[25]
Sato R. Sterol metabolism and SREBP activation[J]. Arch Biochem Biophys, 2010, 501(2): 177-181.
[26]
Bovenga F, Sabbà C, Moschetta A. Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer[J]. Cell Metab, 2015, 21(4): 517-526.
[27]
Silvente-poirot S, Poirot M. Cancer. Cholesterol and cancer, in the balance[J]. Science, 2014, 343(6178): 1445-1446.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要