切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 30 -38. doi: 10.3877/cma.j.issn.1674-0807.2021.01.006

所属专题: 文献

论著

阿托伐他汀增加乳腺癌细胞对多柔比星敏感性的研究
杨璐1, 杨继鑫1, 李南林1,()   
  1. 1. 710032 西安,空军军医大学附属西京医院甲乳血管外科
  • 收稿日期:2020-06-24 出版日期:2021-02-01
  • 通信作者: 李南林

Statins increase sensitivity of breast cancer cells to doxorubicin

Lu Yang1, Jixin Yang1, Nanlin Li1,()   

  1. 1. Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
  • Received:2020-06-24 Published:2021-02-01
  • Corresponding author: Nanlin Li
引用本文:

杨璐, 杨继鑫, 李南林. 阿托伐他汀增加乳腺癌细胞对多柔比星敏感性的研究[J/OL]. 中华乳腺病杂志(电子版), 2021, 15(01): 30-38.

Lu Yang, Jixin Yang, Nanlin Li. Statins increase sensitivity of breast cancer cells to doxorubicin[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2021, 15(01): 30-38.

目的

探讨他汀类药物增加乳腺癌细胞对多柔比星敏感性的机制。

方法

(1)用不同浓度的多柔比星(0、0.01、0.02、0.04、0.08、0.16、0.32、0.64、1.28 μg/ml)与0、2 μmol/L的阿托伐他汀联合处理MDA-MB-231细胞,通过细胞计数检测试剂盒(CCK-8)检测450 nm波长下的吸光度值,从而计算细胞活力。(2)分别用0.3 μg/ml多柔比星、2 μmol/L阿托伐他汀单药及两药联合处理MDA-MB-231细胞,并以未经任何药物处理的细胞作为对照组,通过Hoechst染色检测MDA-MB-231细胞凋亡情况,通过细胞划痕实验、Transwell实验检测细胞迁移及侵袭能力,通过Western blot检测MDA-MB-231细胞中caspase 3、caspase 9、3-羟基-3-甲基戊二酰辅酶A还原酶(HMGCR)、甾醇调节元件结合蛋白转录因子2(SREBP2)及低密度脂蛋白受体(LDLR)的表达。细胞活力比较采用析因分析,未凋亡细胞数、划痕面积百分比、穿膜细胞数及不同蛋白表达等指标的多组比较采用单因素方差分析,两两比较采用LSD法。

结果

(1)与多柔比星单药相比,阿托伐他汀与多柔比星联合应用可以显著抑制MDA-MB-231细胞活力(F=243.043, P<0.001);不同浓度多柔比星组细胞活力比较,差异有统计学意义( F=1 803.617, P<0.001);两个因素存在交互作用(F=21.030, P<0.001)。(2)各组的未凋亡细胞数比较,差异具有统计学意义(对照组:94.00±4.24:阿托伐他汀组:57.00±1.41,多柔比星组:34.50±2.12,阿托伐他汀+多柔比星组:19.00±2.83,F=261.021,P<0.001),两两比较结果显示,组间差异均有统计学意义(P均<0.050)。各组间的划痕面积百分比比较,差异具有统计学意义[对照组:(28.94±3.59)%,阿托伐他汀组:(31.00±2.99)%,多柔比星组:(40.16±2.38)%,阿托伐他汀+多柔比星组:(60.86±3.60)%,F=42.080,P<0.050]。与对照组、阿托伐他汀组及多柔比星组相比,阿托伐他汀+多柔比星组划痕面积均增加(P均<0.050)。各组穿膜细胞数比较,差异具有统计学意义(对照组:101.20±14.55,阿托伐他汀组:75.80±7.33,多柔比星组:32.40±4.78,阿托伐他汀+多柔比星组:8.80±2.50,F=118.031,P<0.001),两两比较结果显示差异均具有统计学意义(P均<0.050)。各组MDA-MB-231细胞中凋亡相关蛋白caspase 3、caspase 9的表达比较,差异均有统计学意义(F=128.854、247.530,P均<0.001)。与多柔比星组相比,阿托伐他汀+多柔比星组caspase 3、caspase 9蛋白的表达显著增加(P均<0.050)。4组MDA-MB-231细胞中HMGCR、SREBP2、LDLR蛋白的表达量比较,差异均具有统计学意义(F=183.193、227.470、586.087,P均<0.001)。两两比较结果显示,与对照组比较,阿托伐他汀+多柔比星组中HMGCR表达明显升高,SREBP2、LDLR表达明显降低(P均<0.050);与对照组相比,多柔比星组HMGCR的表达无明显改变(P>0.050),SREBP2、LDLR的表达明显降低(P均<0.050),阿托伐他汀组HMGCR表达高于对照组(P<0.050);与多柔比星组相比,阿托伐他汀+多柔比星组HMGCR表达增加(P<0.050),SREBP2的表达降低(P<0.050), LDLR的表达无明显变化(P>0.050)。

结论

阿托伐他汀通过抑制HMGCR表达,减少细胞内胆固醇的合成,使细胞更依赖于外源性胆固醇的摄取;多柔比星通过抑制LDLR表达减少外源性胆固醇的摄取;因此,当两药联用后由于细胞内胆固醇合成减少,使细胞更依赖于外源性胆固醇的摄取,对多柔比星更加敏感。

Objective

To explore the mechanism of statins increasing the sensitivity of breast cancer cells to doxorubicin.

Methods

(1)Doxorubicin at gradient concentrations (0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28 μg/ml) and atorvastatin (0, 2 μmol/L) were used to treat MDA-MB- 231 cells, respectively. The optical density at 450 nm wavelength was detected by the cell counting detection kit (CCK-8) to calculate the cell viability. (2) MDA-MB-231 cells were treated with 0.3 μg/ml doxorubicin, 2 μmol/L atorvastatin and the combination of both and the cells without any drug treatment served as control. The apoptosis of MDA-MB-231 cells was detected after Hoechst staining. The cell migration and invasion abilities were measured by cell scratch test and Transwell test. The expression of caspase 3, caspase 9, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), sterol regulatory element binding protein transcription factor 2 (SREBP2) and low-density lipoprotein receptor (LDLR) in MDA-MB-231 cells were determined by Western blot. The cell viability was compared using factor analysis. The number of survival cells, percentage of scratch area and number of cells penetrating membranes and expression of different proteins were compared among multiple groups using one-way analysis of variance and the LSD method was used for pairwise comparison.

Results

(1) Compared with cells treated by doxorubicin alone, the combination of atorvastatin and doxorubicin significantly inhibited the viability of MDA-MB-231 cells (F=243.043, P<0.001); the viability of cells treated by different concentrations of doxorubicin presented a significant difference (F=1 803.617, P<0.001); there was an interaction between the two factors (F=21.030, P<0.001). (2) The number of survival cells presented a significant difference among four groups (control group: 94.00±4.24: atorvastatin group: 57.00±1.41, doxorubicin group: 34.50±2.12, atorvastatin+ doxorubicin group: 19.00±2.83, F=261.021, P<0.001). Pairwise comparison showed that the difference between groups was statistically significant (all P<0.050). The percentage of scratch area presented a significant difference among four groups [control group: (28.94±3.59)%, atorvastatin group: (31.00±2.99)%, doxorubicin group: (40.16±2.38)%, atorvastatin+ doxorubicin group: (60.86±3.60)%, F=42.080, P<0.050]. The scratch area of atorvastatin+ doxorubicin group was significantly increased compared with control group, atorvastatin group and doxorubicin group (all P<0.050). The number of cells penetrating membranes presented a significant difference among four groups (control group: 101.20±14.55, atorvastatin group: 75.80±7.33, doxorubicin group: 32.40±4.78, atorvastatin + doxorubicin group: 8.80±2.50, F=118.031, P<0.001). Pairwise comparison showed that the difference between groups was statistically significant (all P<0.050). After treatment with different drugs, the expressions of caspase 3 and caspase 9 (apoptosis-related proteins) in MDA-MB-231 cells presented a significant difference among four groups (F=128.854, 247.530, both P<0.001). Compared with doxorubicin group, the expression of caspase 3 and caspase 9 in atorvastatin+ doxorubicin group was significantly increased (both P<0.050). The expression of HMGCR, SREBP2 and LDLR in MDA-MB-231 cells presented a significant difference among four groups (F=183.193, 227.470, 586.087, all P<0.001). Pairwise comparison showed that compared with control group, HMGCR expression in atorvastatin+ doxorubicin group was significantly increased (P<0.050), while the expression of SREBP2 and LDLR was significantly decreased (both P<0.050); there was no significant difference in HMGCR expression between control group and doxorubicin group(P>0.050), while the expression of SREBP2 and LDLR in doxorubicin group was significantly lower than that in control group(both P<0.050); HMGCR expression in atorvastatin group was significantly higher than that in control group(P<0.050); compared with doxorubicin group, atorvastatin+ doxorubicin group presented significantly higher expression of HMGCR and lower expression of SREBP2 (both P<0.050), while LDLR expression presented no significant difference (P>0.050).

Conclusions

Atorvastatin reduces the synthesis of intracellular cholesterol by inhibiting HMGCR expression, making MDA-MB-231 cells more dependent on the uptake of exogenous cholesterol; doxorubicin reduces the uptake of exogenous cholesterol by inhibiting LDLR expression. If two drugs are used in combination, MDA-MB-231 cells are more dependent on the uptake of exogenous cholesterol due to reduced synthesis intracellular cholesterol, so they are more sensitive to doxorubicin.

表1 不同浓度多柔比星联合阿托伐他汀处理后的MDA-MB-231细胞活力比较(%)
图1 不同药物处理后MDA-MB-231乳腺癌细胞凋亡情况(Hoechst ×20) a~d图分别所示对照组、阿托伐他汀组、多柔比星组及阿托伐他汀+多柔比星组细胞凋亡情况
图2 光镜下观察不同药物处理后MDA-MB-231乳腺癌细胞形态的变化(×10) a~d图分别所示对照组、阿托伐他汀组、多柔比星组及阿托伐他汀+多柔比星组细胞形态变化
图3 Western blot检测不同药物处理后MDA-MB-231乳腺癌细胞中caspase 3、caspase 9的表达
表2 不同药物处理后MDA-MB-231乳腺癌细胞中caspase 3、caspase 9蛋白的表达
图4 不同药物处理后MDA-MB-231乳腺癌细胞划痕实验结果(×20) a~d图分别所示对照组、阿托伐他汀组、多柔比星组及阿托伐他汀+多柔比星组细胞划痕实验结果
图5 不同药物处理后MDA-MB-231乳腺癌细胞Transwell实验结果(结晶紫 ×20) a~d图分别所示对照组、阿托伐他汀组、多柔比星组及阿托伐他汀+多柔比星组细胞Transwell实验结果
图6 不同药物处理后MDA-MB-231乳腺癌细胞中胆固醇代谢相关蛋白表达
表3 不同药物处理后MDA-MB-231乳腺癌细胞中HMGCR、SREBP2、LDLR蛋白的表达
[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34.
[2]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[3]
钱波. 我国乳腺癌筛查及药物预防的现状及进展[J]. 中国妇幼保健,2019, 34(23): 5558-5561.
[4]
Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC [J]. Cancers (Basel), 2020, 12(4):916.
[5]
孙晓萌,高社干. 三阴性乳腺癌的临床治疗现状及新进展[J]. 实用癌症杂志,2020, 35(6): 1037-1039.
[6]
O’reilly EA, Gubbins L, Sharma S, et al. The fate of chemoresistance in triple negative breast cancer (TNBC)[J]. BBA Clin, 2015, 3: 257-275.
[7]
Ikonen E. Cellular cholesterol trafficking and compartmentalization[J]. Nat Rev Mol Cell Biol, 2008, 9(2): 125-138.
[8]
Wang Y, Rogers PM, Su C, et al. Regulation of cholesterologenesis by the oxysterol receptor, LXRalpha[J]. J Biol Chem, 2008, 283(39): 26 332-26 339.
[9]
Kolanjiappan K, Ramachandran CR, Manoharan S. Biochemical changes in tumor tissues of oral cancer patients[J]. Clin Biochem, 2003, 36(1): 61-65.
[10]
He M, Zhang W, Dong Y, et al. Pro-inflammation NF-κB signaling triggers a positive feedback via enhancing cholesterol accumulation in liver cancer cells[J]. J Exp Clin Cancer Res, 2017, 36(1): 15.
[11]
Kim J, Thompson B, Han S, et al. Uptake of HDL-cholesterol contributes to lipid accumulation in clear cell renal cell carcinoma[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(12): 158 525.
[12]
Munir MT, Ponce C, Powell CA, et al. The contribution of cholesterol and epigenetic changes to the pathophysiology of breast cancer[J]. J Steroid Biochem Mol Biol, 2018, 183: 1-9.
[13]
Holstein SA, Hohl RJ. Synergistic interaction of lovastatin and paclitaxel in human cancer cells[J]. Mol Cancer Ther, 2001, 1(2): 141-149.
[14]
Ahn KS, Sethi G, Aggarwal BB. Reversal of chemoresistance and enhancement of apoptosis by statins through down-regulation of the NF-kappaB pathway[J]. Biochem Pharmacol, 2008, 75(4): 907-913.
[15]
Chen X, Liu Y, Wu J, et al. Mechanistic study of inhibitory effects of atorvastatin and docetaxel in combination on prostate cancer[J]. Cancer Genomics Proteomics, 2016, 13(2): 151-160.
[16]
Werner M, Sacher J, Hohenegger M. Mutual amplification of apoptosis by statin-induced mitochondrial stress and doxorubicin toxicity in human rhabdomyosarcoma cells[J]. Br J Pharmacol, 2004, 143(6): 715-724.
[17]
International Agency for Research on Cancer. Latest global cancer data: cancer burden rises to 19.3 million new casesand 10.0 million cancer deaths in 2020[EB/OL]. [2020-12-15].

URL    
[18]
Kobayashi Y, Kashima H, Rahmanto YS, et al. Drug repositioning of mevalonate pathway inhibitors as antitumor agents for ovarian cancer[J]. Oncotarget, 2017, 8(42): 72147-72156.
[19]
王玲,周巧直,王晓燕. 阿托伐他汀调控MMP-9、Cleaved Caspase-3、Bcl-2和Bax蛋白表达对胃癌细胞增殖、周期和凋亡的影响[J]. 胃肠病学和肝病学杂志,2018, 27(11): 1206-1210.
[20]
Langballe R, Cronin-fenton D, Dehlendorff C, et al. Statin use and risk of contralateral breast cancer: a nationwide cohort study[J]. Br J Cancer, 2018, 119(10): 1297-1305.
[21]
Borgquist S, Broberg P, Tojjar J, et al. Statin use and breast cancer survival - a Swedish nationwide study[J]. BMC Cancer, 2019, 19(1): 54.
[22]
Beckwitt CH, Brufsky A, Oltvai ZN, et al. Statin drugs to reduce breast cancer recurrence and mortality[J]. Breast Cancer Res, 2018, 20(1): 144.
[23]
Wang T, Seah S, Loh X, et al. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway[J]. Oncotarget, 2016, 7(3): 2532-2544.
[24]
Feldt M, Bjarnadottir O, Kimbung S, et al. Statin-induced anti-proliferative effects via cyclin D1 and p27 in a window-of-opportunity breast cancer trial[J]. J Transl Med, 2015, 13: 133.
[25]
Sato R. Sterol metabolism and SREBP activation[J]. Arch Biochem Biophys, 2010, 501(2): 177-181.
[26]
Bovenga F, Sabbà C, Moschetta A. Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer[J]. Cell Metab, 2015, 21(4): 517-526.
[27]
Silvente-poirot S, Poirot M. Cancer. Cholesterol and cancer, in the balance[J]. Science, 2014, 343(6178): 1445-1446.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?