切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2020, Vol. 14 ›› Issue (02) : 78 -85. doi: 10.3877/cma.j.issn.1674-0807.2020.02.004

所属专题: 文献

论著

肿瘤相关巨噬细胞中过氧化物酶体增殖物激活受体γ辅助活化因子1α对乳腺癌4T1细胞上皮-间质转化及侵袭、转移能力的影响
靳鑫1, 王园园2, 倪田根2, 王宁2, 罗浩军2, 明佳2,()   
  1. 1. 408000 重庆市涪陵中心医院重症医学科
    2. 400010 重庆医科大学附属第二医院乳腺甲状腺外科
  • 收稿日期:2018-09-02 出版日期:2020-04-01
  • 通信作者: 明佳
  • 基金资助:
    重庆市渝中区科技计划项目(20160104); 重庆市卫生计生委医学科研计划项目(2016ZDXM012); 重庆技术创新于应用示范(社会民生类)一般项目(cstc2018jscx-msybx0020)

Effect of PPAR γ coactivator-1α in tumor-associated macrophages on epithelial-mesenchymal transition, invasion and metastasis of breast cancer 4T1 cells

Xin Jin1, Yuanyuan Wang2, Tiangen Ni2, Ning Wang2, Haojun Luo2, Jia Ming2,()   

  1. 1. Department of Critical Medicine, Chongqing Fuling Central Hospital, Chongqing 408000, China
    2. Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
  • Received:2018-09-02 Published:2020-04-01
  • Corresponding author: Jia Ming
  • About author:
    Corresponding author: Ming Jia, Email:
引用本文:

靳鑫, 王园园, 倪田根, 王宁, 罗浩军, 明佳. 肿瘤相关巨噬细胞中过氧化物酶体增殖物激活受体γ辅助活化因子1α对乳腺癌4T1细胞上皮-间质转化及侵袭、转移能力的影响[J]. 中华乳腺病杂志(电子版), 2020, 14(02): 78-85.

Xin Jin, Yuanyuan Wang, Tiangen Ni, Ning Wang, Haojun Luo, Jia Ming. Effect of PPAR γ coactivator-1α in tumor-associated macrophages on epithelial-mesenchymal transition, invasion and metastasis of breast cancer 4T1 cells[J]. Chinese Journal of Breast Disease(Electronic Edition), 2020, 14(02): 78-85.

目的

探讨小鼠乳腺癌细胞(4T1)和小鼠腹腔巨噬细胞(PMs)共培养构成的肿瘤相关巨噬细胞(TAMs)中,过氧化物酶体增殖物激活受体γ辅助活化因子1α(PGC-1α)促进4T1细胞侵袭的作用机制。

方法

(1)提取PMs并用小发卡RNA(shRNA)敲低PGC-1α蛋白表达:采用原代细胞提取的方法提取PMs,并用低表达PGC-1α的shRNA(sh-PGC-1α-1、sh-PGC-1α-2、sh-PGC-1α-3)转染细胞,然后用Western blot检测PMs[对照组(PMs组)、阴性对照组(sh-control)、sh-PGC-1α-1组、sh-PGC-1α-2组、sh-PGC-1α-3组]中PGC-1α蛋白表达水平,选取抑制效果最好的shRNA用于实验。所得低表达PGC-1α的sh-PGC-1α PMs为本实验所需。(2)验证TAMs中PGC-1α蛋白表达水平:利用Transwell建立PMs/sh-PGC-1α PMs和4T1细胞的共培养体系,得到TAMs/sh-PGC-1α TAMs。收集细胞并提取蛋白,用Western blot检测对照组(PMs组)、TAMs组、sh-PGC-1α TAMs组PGC-1α蛋白表达水平。(3)验证共培养体系中4T1细胞的侵袭、迁移、愈合能力:利用Transwell小室模型观察对照组(4T1组)、TAMs组、sh-PGC-1α TAMs组4T1细胞的侵袭、迁移数;利用创伤愈合实验观察对照组(4T1组)、TAMs组、sh-PGC-1α TAMs组4T1细胞的愈合情况。(4)验证共培养体系中PMs的PGC-1α对4T1细胞发生细胞上皮-间质转化(EMT)的影响:利用Transwell建立PMs /sh-PGC-1α PMs和4T1细胞的共培养体系,采用Western blot检测对照组(4T1组)、TAMs组、sh-PGC-1α TAMs组EMT相关蛋白E-cadherin(上皮标志物)及vimentin(间质标志物)的表达情况。多组实验数据比较采用单因素方差分析,两两比较采用LSD法。

结果

(1)对照组(PMs组)、阴性对照组、sh-PGC-1α-1组、sh-PGC-1α-2组和sh-PGC-1α-3组PGC-1α表达水平分别为1.00±0.00、0.96±0.06、0.43±0.04、0.35±0.07和0.38±0.08,5组比较,差异有统计学意义(F=32.648,P<0.050),其中,对照组(PMs组)分别与阴性对照组、sh-PGC-1α-3组比较,PGC-1α表达水平的差异均无统计学意义(P=0.991、0.065),但是,sh-PGC-1α-1组、sh-PGC-1α-2组PGC-1α表达水平均低于对照组(PMs组)(P=0.014、0.045),并且,sh-PGC-1α-1组、sh-PGC-1α-2组和sh-PGC-1α-3组的PGC-1α表达水平均低于阴性对照组(P=0.015、0.018、0.035)。因此,选择对PGC-1α抑制效果最好的sh-PGC-1α-2进行后续实验。(2)对照组(PMs组)、TAMs组、sh-PGC-1α TAMs组PGC-1α表达水平分别为1.00±0.00、1.92±0.20和0.90±0.23,3组比较,差异有统计学意义(F=10.294,P=0.011),其中TAMs组PGC-1α蛋白表达水平明显高于对照组(PMs组)和sh-PGC-1α TAMs组(P均<0.050)。(3)Transwell侵袭实验显示,对照组(4T1组)、TAMs组、sh-PGC-1α TAMs组比较,共培养24 h后穿膜的细胞数分别为(41.67±6.01)、(75.33±5.46)和(24.33±1.45)个,3组比较,差异有统计学意义(F=29.668,P<0.050),其中TAMs组4T1细胞的侵袭能力显著高于对照组(4T1组)和sh-PGC-1α TAMs组(P均<0.050)。Transwell迁移实验显示,对照组(4T1组)、TAMs组、sh-PGC-1α TAMs组共培养24 h后穿膜的细胞数分别为(55.67±12.13)、(97.67±8.45)和(30.67±6.49)个,3组比较,差异有统计学意义(F=13.193,P<0.05),其中TAMs组4T1细胞的迁移能力显著高于对照组(4T1组)和sh-PGC-1α TAMs组(P均<0.050)。创伤愈合实验显示,对照组(4T1组)、TAMs组、sh-PGC-1α TAMs组4T1细胞24 h的愈合率分别为(100.00±0.00)%、(135.98±5.18)%和(68.82±7.28)%,3组比较,差异有统计学意义(F=42.435,P<0.050),其中TAMs组4T1细胞的愈合能力显著高于对照组(4T1组)和sh-PGC-1α TAMs组(P<0.050)。(4)Western blot检测发现:对照组(4T1组)、TAMs组和sh-PGC-1α TAMs组E-cadherin表达水平分别为1.00±0.00、0.44±0.11和2.51±1.67, vimentin表达水平分别为1.00±0.00、2.20±0.15和0.36±0.10,3组比较,E-cadherin和vimentin表达水平的差异均有统计学意义(F=87.295、79.058,P均<0.050);组间两两比较显示,TAMs组E-cadherin表达水平显著低于对照组(4T1组)和sh-PGC-1α TAMs组(P均<0.050),vimentin表达水平显著高于对照组(4T1组)和sh-PGC-1α TAMs组(P均<0.050),而sh-PGC-1α TAMs组E-cadherin表达水平显著高于对照组(4T1组)(P<0.050),vimentin表达水平显著低于对照组(4T1组)(P<0.050)。

结论

TAMs可促进4T1细胞的侵袭、迁移、愈合以及EMT过程,且该作用与TAMs的PGC-1α相关。

Objective

To investigate the activation of peroxisome proliferator-activated receptor(PPAR) γ in tumor-associated macrophages (TAMs) composed of mouse breast cancer cells (4T1) and co-cultured mouse peritoneal macrophages (PMs) and explore the mechanism of PPAR γ coactivator-1α (PGC-1α) promoting 4T1 cell invasion.

Methods

(1) Extract PMs and use short hairpin RNA (shRNA) to knock down PGC-1α protein expression. PMs were extracted form primary cells, and transfected with shRNA (sh-PGC-1α-1, sh-PGC-1α-2, sh-PGC-1α-3), and then PGC-1α protein expression was determined in the control group (PMs group), negative control group (sh-control), sh-PGC-1α-1 group, sh-PGC-1α-2 group and sh-PGC-1α-3 group using Western blot. The shRNA with the best inhibitory effect was selected for experiments. The sh-PGC-1α PMs with low expression of PGC-1α were preserved for this experiment. (2) Verify the expression of PGC-1α protein in TAMs. Transwell method was used to establish a co-culture system of PMs/sh-PGC-1α PMs and 4T1 cells to obtain TAMs/sh-PGC-1α TAMs. The cells were collected and the protein was extracted. The expression of PGC-1α protein in the control group (PMs group), TAMs group, and sh-PGC-1α TAMs group was detected by Western blot. (3) Verify the invasion, migration, and healing ability of 4T1 cells in the co-culture system. The numbers of invasive and metastatic 4T1 cells in the control group (4T1 group), TAMs group and sh-PGC-1α TAMs group were measured using a Transwell chamber model; the wound healing test was used to observe the healing of 4T1 cells in the control group (4T1 group), TAMs group and sh-PGC-1α TAMs group. (4) Verify the effect of PGC-1α in PMs on the epithelial-mesenchymal transition (EMT) of 4T1 cells in the co-culture system. Transwell was used to establish a co-culture system of PMs/sh-PGC-1α PMs and 4T1 cells; the expressions of E-cadherin (epithelial marker) and vimentin (interstitial marker) in the control group (4T1 group), TAMs group and sh-PGC-1α TAMs group were detected using Western blot. Group comparison was performed using single factor analysis of variance, and the pairwise comparison was performed using the LSD method.

Results

(1) The expression of PGC-1α was 1.00±0.00, 0.96 ± 0.06, 0.43 ± 0.04, 0.35 ± 0.07 and 0.38 ± 0.08 in the control group (PMs group), negative control group, sh-PGC-1α-1 group, sh-PGC-1α-2 group and sh-PGC-1α-3 group, respectively, indicating a significant difference across five groups (F=32.648, P<0.050). There was no significant difference in PGC-1α expression between the control group (PMs group) and negative control group or sh-PGC-1α-3 group (P=0.991, 0.065). The sh-PGC-1α-1 group and sh-PGC-1α-2 group had significantly lower expression of PGC-1α expression compared with the control group (PMs group) (P=0.014, 0.045), and PGC-1α expression in the three groups (sh-PGC-1α-1 group, sh-PGC-1α-2 group and sh-PGC-1α-3 group) was significantly lower than that in the negative control group (P=0.015, 0.018, 0.035). Therefore, sh-PGC-1α-2 presented the best inhibitory effect on PGC-1α and it was selected for subsequent experiments. (2) The expression of PGC-1α in the control group (PMs group), TAMs group and sh-PGC-1α TAMs group was 1.00 ± 0.00, 1.92 ± 0.20 and 0.90 ± 0.23, respectively, indicating a significant difference across three groups (F=10.294, P=0.011). The expression of PGC-1α in TAMs group was significantly higher than that in the control group (PMs group) or sh-PGC-1α TAMs group (both P<0.050). (3) Transwell invasion experiments showed that the number of cells that passed through the membrane after 24 hours of co-culture were 41.67 ± 6.01, 75.33 ± 5.46 and 24.33 ± 1.45 in the control group (4T1 group), TAMs group and sh-PGC-1α TAMs group, respectively, indicating a significant difference (F=29.668, P<0.050). The invasion ability of 4T1 cells in the TAMs group was significantly higher than that in the control group (4T1 group) and sh-PGC-1α TAMs group (both P<0.050). Transwell migration experiments showed that the number of cells that passed through the membrane after the 24 hours of co-culture was 55.67 ± 12.13, 97.67 ± 8.45 and 30.67± 6.49 in the control group (4T1 group), TAMs group and sh-PGC-1α TAMs group, respectively, indicating a significant difference (F=13.193, P<0.050). The migration ability of 4T1 cells in the TAMs group was significantly higher than that in the control group (4T1 group) or the sh-PGC-1α TAMs group (both P<0.050). Wound healing experiments showed that the healing rate of 4T1 cells for 24 hours was (100.00 ± 0.00)%, (135.98 ± 5.18)% and (68.82±7.28)% in the control group (4T1 group), TAMs group, and sh-PGC-1α TAMs group, respectively, indicating a significant difference (F=42.435, P<0.050). The healing ability of 4T1 cells in the TAMs group was significantly higher than that in the control group (4T1 group) or sh-PGC-1α TAMs group (P<0.050). (4) Western blot analysis found that the expression of E-cadherin was 1.00 ± 0.00, 0.44 ± 0.11 and 2.51 ± 1.67, and the expression of vimentin was 1.00 ± 0.00, 2.20 ± 0.15 and 0.36 ± 0.10 in the control group (4T1 group), TAMs group and sh-PGC-1α TAMs group, respectively, indicating a significant difference across three groups (F=87.295, 79.058, both P<0.050); pairwise comparison showed that the expression of E-cadherin in the TAMs group was significantly lower than that in the control group (4T1 group) or sh-PGC-1α TAMs group (both P<0.050), and the expression of vimentin in the TAMs group was significantly higher than that in the control group (4T1 group) or sh-PGC-1α TAMs group (all P<0.050), but the expression of E-cadherin in the sh-PGC-1α TAMs group was significantly higher than that in the control group (4T1 group) (P<0.050), and the expression of vimentin in the sh-PGC-1α TAMs group was significantly lower than that in the control group (P<0.050).

Conclusion

TAMs can promote the invasion, migration, healing and EMT of 4T1 cells, which is related to PGC-1α in TAMs.

图1 采用Western blot检测5组PMs的PGC-1α蛋白表达水平
图2 采用Western blot检测3组细胞的PGC-1α蛋白表达水平
图3 采用普通光学显微镜观察4T1细胞的侵袭能力(结晶紫 ×400) a~c图分别所示对照组(4T1组)、TAMs组和sh-PGC-1α TAMs组细胞的侵袭能力
图4 采用普通光学显微镜观察3组4T1细胞的迁移能力(结晶紫 ×400) a~c图分别所示对照组(4T1组)、TAMs组和sh-PGC-1α TAMs组细胞的迁移能力
图5 采用普通光学显微镜观察3组4T1细胞的愈合能力(×100) a~c图与d~f图分别所示对照组(4T1组)、TAMs组和sh-PGC-1α TAMs组细胞0 h与24 h的愈合能力
图6 采用Western blot检测3组4T1细胞中E-cadherin和vimentin表达水平
[1]
Lewis CE, Leek R, Harris A, et al. Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associatedmacrophages[J]. J Leukoc Biol, 1995,57(5):747-751.
[2]
Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014,41(1):49-61.
[3]
Ostuni R, Kratochvill F, Murray PJ, et al. Macrophages and cancer: from mechanisms to therapeutic implications[J]. Trends Immunol, 2015,36(4):229-239.
[4]
Chanmee T, Ontong P, Konno K, et al. Tumor-associated macrophages as major players in the tumor microenvironment[J]. Cancers (Basel), 2014,6(3):1670-1690.
[5]
Kovaleva OV, Samoilova DV, Shitova MS, et al. Tumor associated macrophages in kidney cancer[J]. Anal Cell Pathol (Amst), 2016,2016:9 307 549.
[6]
Wang C, Kar S, Lai X, et al. Triple negative breast cancer in Asia: An insider's view[J]. Cancer Treat Rev, 2018,62:29-38.
[7]
代朦,靳鑫,雷优扬,等.过表达miR-382的肿瘤相关巨噬细胞对三阴性乳腺癌生物学特性的影响[J].第三军医大学学报,2018,40(15): 1375-1382.
[8]
Pineda-Torra I, Gage M, de Juan A, et al.Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages[J]. Methods Mol Biol, 2015, 1339: 101-109.
[9]
Zhang B,Wang J,Gao J, et al. Alternatively activated RAW264.7 macrophages enhance tumor lymphangiogenesis in mouse lung adenocarcinoma[J].J Cell Biochem, 2009,107(1): 134-143.
[10]
Lehmann BD, Jovanovic B, Chen X, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection[J]. PLoS One,2016,11(6):e157 368.
[11]
Trikha P, Sharma N, Pena C, et al. E2f3 in tumor macrophages promotes lung metastasis[J]. Oncogene, 2016,35(28):3636-3646.
[12]
Vazquez F, Lim JH, Chim H, et al. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress[J]. Cancer Cell, 2013,23(3):287-301.
[13]
LeBleu VS, O’Connell JT, Gonzalez Herrera KN, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis[J]. Nat Cell Biol, 2014,16(10):992-1003.
[14]
Vu T, Datta PK. Regulation of EMT in colorectal cancer: a culprit in metastasis[J]. Cancers (Basel), 2017,9(12):E171.
[15]
Fedele M, Cerchia L, Chiappetta G. The epithelial-to-mesenchymal transition in breast cancer: focus on basal-like carcinomas[J]. Cancers (Basel), 2017,9(10):E134.
[16]
Saito A, Horie M, Nagase T. TGF-beta signaling in lung health and disease[J]. Int J Mol Sci, 2018,19(8):E2460.
[17]
Ye X, Brabletz T, Kang Y, et al. Upholding a role for EMT in breast cancer metastasis[J]. Nature, 2017,547(7661):E1-E3.
[18]
Zhang J, Yao H, Song G, et al. Regulation of epithelial-mesenchymal transition by tumor-associated macrophages in cancer[J]. Am J Transl Res, 2015,7(10):1699-1711.
[19]
Petrova YI, Schecterson L, Gumbiner BM. Roles for E-cadherin cell surface regulation in cancer[J]. Mol Biol Cell, 2016,27(21):3233-3244.
[20]
Cai D, Chen SC, Prasad M, et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration[J]. Cell, 2014,157(5):1146-1159.
[21]
邓淼,刘江波,刘起鹏,等. E-钙黏蛋白在乳腺癌组织中的表达及其临床意义[J/CD].中华乳腺病杂志(电子版),2015,9(3):182-187.
[22]
Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy[J]. Cell Mol Life Sci, 2011,68(18):3033-3046.
[23]
Evans RM. Vimentin: the conundrum of the intermediate filament gene family[J]. Bioessays, 1998,20(1):79-86.
[24]
Wu HT, Kuo YC, Hung JJ, et al. K63-polyubiquitinated HAUSP deubiquitinates HIF-1alpha and dictates H3K56 acetylation promoting hypoxia-induced tumour progression[J]. Nat Commun, 2016,7:13 644.
[25]
周炳娟,马秋双,陈红,等. 叉头框转录因子M1、Slug、E-cadherin及vimentin在基底细胞样乳腺癌中的表达及其临床意义[J/CD].中华乳腺病杂志(电子版),2014,8(5):324-329.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[13] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要