[1] |
Lewis CE, Leek R, Harris A, et al. Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associatedmacrophages[J]. J Leukoc Biol, 1995,57(5):747-751.
|
[2] |
Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014,41(1):49-61.
|
[3] |
Ostuni R, Kratochvill F, Murray PJ, et al. Macrophages and cancer: from mechanisms to therapeutic implications[J]. Trends Immunol, 2015,36(4):229-239.
|
[4] |
Chanmee T, Ontong P, Konno K, et al. Tumor-associated macrophages as major players in the tumor microenvironment[J]. Cancers (Basel), 2014,6(3):1670-1690.
|
[5] |
Kovaleva OV, Samoilova DV, Shitova MS, et al. Tumor associated macrophages in kidney cancer[J]. Anal Cell Pathol (Amst), 2016,2016:9 307 549.
|
[6] |
Wang C, Kar S, Lai X, et al. Triple negative breast cancer in Asia: An insider's view[J]. Cancer Treat Rev, 2018,62:29-38.
|
[7] |
代朦,靳鑫,雷优扬,等.过表达miR-382的肿瘤相关巨噬细胞对三阴性乳腺癌生物学特性的影响[J].第三军医大学学报,2018,40(15): 1375-1382.
|
[8] |
Pineda-Torra I, Gage M, de Juan A, et al.Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages[J]. Methods Mol Biol, 2015, 1339: 101-109.
|
[9] |
Zhang B,Wang J,Gao J, et al. Alternatively activated RAW264.7 macrophages enhance tumor lymphangiogenesis in mouse lung adenocarcinoma[J].J Cell Biochem, 2009,107(1): 134-143.
|
[10] |
Lehmann BD, Jovanovic B, Chen X, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection[J]. PLoS One,2016,11(6):e157 368.
|
[11] |
Trikha P, Sharma N, Pena C, et al. E2f3 in tumor macrophages promotes lung metastasis[J]. Oncogene, 2016,35(28):3636-3646.
|
[12] |
Vazquez F, Lim JH, Chim H, et al. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress[J]. Cancer Cell, 2013,23(3):287-301.
|
[13] |
LeBleu VS, O’Connell JT, Gonzalez Herrera KN, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis[J]. Nat Cell Biol, 2014,16(10):992-1003.
|
[14] |
Vu T, Datta PK. Regulation of EMT in colorectal cancer: a culprit in metastasis[J]. Cancers (Basel), 2017,9(12):E171.
|
[15] |
Fedele M, Cerchia L, Chiappetta G. The epithelial-to-mesenchymal transition in breast cancer: focus on basal-like carcinomas[J]. Cancers (Basel), 2017,9(10):E134.
|
[16] |
Saito A, Horie M, Nagase T. TGF-beta signaling in lung health and disease[J]. Int J Mol Sci, 2018,19(8):E2460.
|
[17] |
Ye X, Brabletz T, Kang Y, et al. Upholding a role for EMT in breast cancer metastasis[J]. Nature, 2017,547(7661):E1-E3.
|
[18] |
Zhang J, Yao H, Song G, et al. Regulation of epithelial-mesenchymal transition by tumor-associated macrophages in cancer[J]. Am J Transl Res, 2015,7(10):1699-1711.
|
[19] |
Petrova YI, Schecterson L, Gumbiner BM. Roles for E-cadherin cell surface regulation in cancer[J]. Mol Biol Cell, 2016,27(21):3233-3244.
|
[20] |
Cai D, Chen SC, Prasad M, et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration[J]. Cell, 2014,157(5):1146-1159.
|
[21] |
邓淼,刘江波,刘起鹏,等. E-钙黏蛋白在乳腺癌组织中的表达及其临床意义[J/CD].中华乳腺病杂志(电子版),2015,9(3):182-187.
|
[22] |
Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy[J]. Cell Mol Life Sci, 2011,68(18):3033-3046.
|
[23] |
Evans RM. Vimentin: the conundrum of the intermediate filament gene family[J]. Bioessays, 1998,20(1):79-86.
|
[24] |
Wu HT, Kuo YC, Hung JJ, et al. K63-polyubiquitinated HAUSP deubiquitinates HIF-1alpha and dictates H3K56 acetylation promoting hypoxia-induced tumour progression[J]. Nat Commun, 2016,7:13 644.
|
[25] |
周炳娟,马秋双,陈红,等. 叉头框转录因子M1、Slug、E-cadherin及vimentin在基底细胞样乳腺癌中的表达及其临床意义[J/CD].中华乳腺病杂志(电子版),2014,8(5):324-329.
|