切换至 "中华医学电子期刊资源库"

中华乳腺病杂志(电子版) ›› 2019, Vol. 13 ›› Issue (06) : 368 -371. doi: 10.3877/cma.j.issn.1674-0807.2019.06.010

所属专题: 文献

综述

乳腺癌辐射敏感性相关基因研究进展
孔亚茸1, 张秋宁2, 王小虎3,()   
  1. 1. 730030 兰州大学生命科学学院
    2. 730050 兰州 甘肃省肿瘤医院放疗科
    3. 730030 兰州大学生命科学学院;730050 兰州 甘肃省肿瘤医院放疗科
  • 收稿日期:2017-04-15 出版日期:2019-12-01
  • 通信作者: 王小虎
  • 基金资助:
    2016陇原创新创业人才项目(甘组通字(2016)97号); 甘肃省技术研究与开发专项计划(1004TCYA006); 西部放射治疗协会项目(CSWOG-RTOG 2011/2)

Radiation sensitivity-related genes in breast cancer

Yarong Kong1, Qiuning Zhang2, Xiaohu Wang3()   

  • Received:2017-04-15 Published:2019-12-01
  • Corresponding author: Xiaohu Wang
引用本文:

孔亚茸, 张秋宁, 王小虎. 乳腺癌辐射敏感性相关基因研究进展[J/OL]. 中华乳腺病杂志(电子版), 2019, 13(06): 368-371.

Yarong Kong, Qiuning Zhang, Xiaohu Wang. Radiation sensitivity-related genes in breast cancer[J/OL]. Chinese Journal of Breast Disease(Electronic Edition), 2019, 13(06): 368-371.

乳腺癌是危害女性健康的主要疾病之一。目前放射疗法是乳腺癌综合治疗方式之一,了解乳腺癌细胞辐射敏感性的相关机制可以为精准治疗提供新的靶点。笔者从影响肿瘤细胞辐射敏感性的内在因素如细胞周期、细胞凋亡调控、DNA损伤与修复和细胞缺氧等几个方面,对近几年报道的影响乳腺癌辐射敏感性的相关基因,包括BTG1、Top-1、miR-200c、miR-144、miR-668、HAP1、CTSL、erbB2/neu、BRCA1、ATM、Zfhx1a、HMGB11、CUX1、HIF-1等,做了初步的分类总结,并概述了其影响乳腺癌细胞辐射敏感性的机制,希望可以为乳腺癌辐射敏感性的深入研究和乳腺癌临床治疗提供理论支持。

[1]
Marques JHM, Mota AL, Oliveira JG, et al. Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: In vivo and in vitro studies[J]. Life Sci, 2018, 208:131-138.
[2]
Sheikh A, Hussain SA, Ghori Q, et al. The spectrum of genetic mutations in breast cancer[J]. Asian Pac J Cancer Prev, 2015, 16(6):2177-2185.
[3]
Li T, Mello-Thoms C, Brennan PC. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence[J]. Breast Cancer Res Treat, 2016, 159(3): 395-406.
[4]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[5]
黄莉,王若峥. 细胞周期素与肿瘤放射敏感性[J]. 新疆医科大学学报,2008, 31(11): 1510-1512.
[6]
Zhu R, Li W, Xu Y, et al. Upregulation of BTG1 enhances the radiation sensitivity of human breast cancer in vitro and in vivo[J]. Oncol Rep, 2015, 20(1): 3017-3024.
[7]
Wu D, Zhou W, Wang S, et al. Tob1 enhances radiosensitivity of breast cancer cells involving the JNK and p38 pathways[J]. Cell Biol Int, 2016, 39(12): 1425-1430.
[8]
Galina G, Teplyuk NM, Krichevsky AM. Context effect: microRNA-10b in cancer cell proliferation, spread and death[J]. Autophagy, 2011, 7(11): 1384-1386.
[9]
Quesne JL, Caldas C. micro-RNAs and breast cancer[J]. Mol Oncol, 2010, 4(3): 230-241.
[10]
Sun Q, Liu T, Yuan Y, et al. miR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1[J]. Int J Cancer, 2015, 136(5): 1003-1012.
[11]
Liang WT, Cheng ZY, Jia ZQ, et al. PTEN: a new target in inhibiting of tumor invasion and metastasis[J]. Sheng Li Ke Xue Jin Zhan, 2011, 42(3):201-205.
[12]
Lei Y, Yanming Y, Jiguang H, et al. MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells[J]. Oncol Rep, 2015, 34(4): 1845-1852.
[13]
Luo M, Ding L, Li Q, et al. miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα[J]. Breast Cancer, 2017, 24(5): 673-682.
[14]
Wu J, Zhang JY, Yin L, et al. HAP1 gene expression is associated with radiosensitivity in breast cancer cells[J]. Biochem Biophys Res Commun, 2015, 456(1): 162-166.
[15]
Yang N, Wang P, Wang WJ, et al. Inhibition of cathepsin L sensitizes human glioma cells to ionizing radiation in vitro through NF-κB signaling pathway[J]. Acta Pharmacol Sin, 2015, 36(3): 400.
[16]
Hou J, Zhou Z, Chen X, et al. HER2 reduces breast cancer radiosensitivity by activating focal adhesion kinase in vitro and in vivo[J]. Oncotarget, 2016,7(29):45 186-45 198.
[17]
Santivasi WL, Fen X. Ionizing radiation-induced DNA damage, response, and repair[J]. Antioxid Redox Signal, 2014, 21(2): 251-259.
[18]
Tokuyama Y, Furusawa Y, Ide H, et al. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation[J]. J Radiat Res, 2015, 56(3):446-455.
[19]
Sonoda E, Hochegger H, Saberi A, et al. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair[J]. DNA Repair, 2006, 5(9): 1021-1029.
[20]
Mijnes J, Veeck J, Gaisa NT, et al. Promoter methylation of DNA damage repair (DDR) genes in human tumor entities: RBBP8/CtIP is almost exclusively methylated in bladder cancer[J]. Clin Epigenetics, 2018, 10:15.
[21]
Hoa NN, Kobayashi J, Omura M, et al. BRCA1 and CtIP are both required to recruit Dna2 at double-strand breaks in homologous recombination[J]. PLoS One, 2015, 10(4): e0124495.
[22]
So S, Davis AJ, Chen DJ. Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites[J]. J Cell Biol, 2009, 187(7): 977-990.
[23]
Lin ML, Park JH, Nishidate T, et al. Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family[J]. Breast Cancer Res, 2007, 9(1): R17.
[24]
Beke L, Kig C, Linders JT, et al. MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells[J]. Biosci Rep, 2015, 5(6).pii: e00267.
[25]
Sun H, Wang Y, Wang Z, et al. Aurora-A controls cancer cell radio-and chemoresistance via ATM/Chk2-mediated DNA repair networks[J]. Biochim Biophys Acta, 2014, 1843(5): 934-944.
[26]
Peijing Z, Yongkun W, Li W, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1[J]. Nat Cell Biol, 2014, 16(9): 864-875.
[27]
Kristoffer V, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair[J]. Oncogene, 2003, 1(37): 5792-5812.
[28]
Ciszewski WM, Tavecchino M, Dastych J, et al. DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin[J]. Breast Cancer Res Treat, 2014, 143(1): 47-55.
[29]
Agresti A, Bianchi ME. HMGB proteins and gene expression[J]. Curr Opin Genet Dev, 2003, 13(2): 170-178.
[30]
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal[J]. Nat Rev Immunol, 2005, 5(4): 331-342.
[31]
Shaobo K, Fuxiang Z, Hui Y, et al. Downregulation of high mobility group box 1 modulates telomere homeostasis and increases the radiosensitivity of human breast cancer cells[J]. Int J Oncol, 2015, 46(3): 1051.
[32]
Ramdzan ZM, Ginjala V, Pinder JB, et al. The DNA repair function of CUX1 contributes to radioresistance[J]. Oncotarget, 2017, 8(12):19 021-19 038.
[33]
Karar J, Maity A. Modulating the tumor microenvironment to increaseradiation responsiveness[J]. Cancer Biol Ther, 2009, 8(21): 1994-2001.
[34]
Cohen-Jonathan Moyal E. Angiogenic inhibitors and radiotherapy: from the concept to the clinical trial[J]. Cancer Radiother, 2009, 13(6-7): 562-567.
[35]
Zhong R, Xu H, Chen G, et al. The role of hypoxia-inducible factor-1α in radiation-induced autophagic cell death in breast cancer cells[J]. Tumour Biol, 2015, 36(9): 7077-7083.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?